Stochastic Integrals.
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the Lebesgue theory assumes that f(-) is a bounded continuous function and z(s) is a
function of bounded variation so that dz can be thought of as a measure on [0,7]. With
that we get the bound

In defining the integral

(1) [I| < sup [f(s)[Varprz()
0<s<T

where

Vary (- —supZ\x it1) — (t;)]

where P = {0 = tg < t1 < ty--- < t, = T} is an arbitrary partition of [0,7]. It is
calculated as the limit of the sum

L= Fla(m)a(tin) — a(t)]

where t; < 7; < t;41 are arbitrary points. The estimate (1) comes from the worst possible
case where there are no cancellations and

(1] = lim | I, |<Z|f w() e (tivr) — 2(t:)]

< sup [£(s |mn§jm 1) = o(t:)]

0<s<T

= sup If(S)IVaT[o,T]w(-)
0<s<T

However if x(+) is random we can do better. Let x(-) be Brownian motion. we will define
the ”Wiener Stochastic Integral”
T
— [ 1) dsts)
0

Let us assume that f is a simple function f = f; on [t; <t < ¢;41]. Then
If) = Z filz(tivr) — z(t;)]

is a Gaussian random variable with mean 0 and variance

T
= 3t )= [ I



If f is a square integrable function on [0,7] it can be approximated by a sequence f,, of
simple functions in Ls[0,T]. Then

T
lim E[I(f.) = I(fm)]’] = lim ; |fa(t) = fm(t)|?dt = O

n,m— oo n,m— oo

Hence

I(f) = lim I(fn)

n—oo

exists on Lo(P) where the Brownian motion is defined so long as [|f(¢)]?dt < co. I(f)

has a Gaussian distribution with mean 0 and variance fOT |f(t)|?dt. Note that each I(f)
is defined only almost surely as a member in Lo(P).

We need to do this because almost surely Brownian motion is NOT of bounded varia-
tion. Since Brownian paths are almost surely continuous, if they were of bounded variation,
then

lim > [&(tigr) — 2(t:))* < sup et — 2(t:)|[Vargr(z(-) =0
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On the other hand
E[) [a(tiy) — a(t;)]” = T) = E[Z[[x(ti+l> — x(t:))? = (tiga — )]
=Y Ellz(titr) — a(t)]® = (tinr — )]
= Z 2(tip1 — t;)?

and therefore > [z(t;11) — x(¢;)]? goes to T in Ly and not to 0.

In Wiener’s stochastic integral f(¢) is a non-random function. But in It6’s theory,
f(t,w) can depend on the past history up to time ¢ and not on the future. Consider a
partition 0 =ty < t; < --- < t,, = T. Functions f;(w) that are bounded measurable with
respect to F,. Note that x(t) is a Brownian motion with respect to F;. Then if

w) = Z fi(w)l[ti,ti-q-ﬂ(t)

i.e. it equals f; on [t;,t;41] then the natural definition of the integral is

S(f,10,T]) = / f(s,w)da(s Zfz (tig1) — a(t:)]

We denote the class of such f’s by F. The increment (x(¢;11) — x(¢;)) is independent of
F:, and an easy computation yields

E[S(f,[0,T]) =0 and E[S(f,[0,T]? / f(s,w)%ds]



and if we define for ¢ <t < tp4q

§(t) = S(f,[0,1]) = /0 f(s,w)d(s) = Z filw)z(tivr) = 2(t:)] + fe(w)le(t) — 2(t)]
then (£(t), F:) is a martingale. It is square integrable and

€(t)? - / f(s,w)ds

is again a JF; martingale. From Doob’s inequality

T
B[l sup [£(1)[]%) < 4E / £ (s, w)ds]

0<t<T

In order to define the It6 stochastic integral for f we need to know if we can approximate
f by fn € F in the sense that

T
B[ (o) = fs0)ds =0

A function f : [0,7] xQ — R is progressively measurable if for every ¢ € [0, 7] the function
f(s,w) :[0,t]xQ — Ris (jointly) measurable as a map of [[0, ] xQ, B[0, t] x F;] — [R, B(R)]
If f is progressively measurable then

/ () Pds
0

is again progressively measurable and it makes sense to talk about square integrable pro-
gressively measurable functions, i.e. those for which

E[/OTv(s,w)Fds] < oo

Let us call this class Fo. We define stochastic integrals for such functions by the following
steps.

Step 1. We need to show that any f € Fy can be approximated by f, € F such that

T
U= = B| [ (o) = fswPas] =0
0

It would then follow that &, (t,w)) = f(f frn(s,w)ds satisfies

lim B[ sup [&.(t) — &m(t)]]*] =0

n,m—oo OStST



There is then the limit £ of &, that is progressively measurable and almost surely contin-
uous. Moreover £(t) would be a martingale as would [£(¢) fo s, w)]?ds.

Step 2. If f(¢,w) is uniformly bounded and continuous in ¢ for almost all w, then f, (t,w) =
f(@,w) will work.

Step 3. If f(t,w) is bounded and progressively measurable then

Fultsw) = % /( £(5,w)ds

t—h)VO

is an almost surely continuous, bounded, progressively measurable approximation of f.

Step 4. Finally if f € Fy, we can truncate and choose f, = fif |f| < n and f, =0
otherwise. Then f,, is clearly progressively measurable, bounded and approximates f. This

way for each f € Fy we define
t
£ltw) = [ Flsw)da(s)
0

that satisfies the propertles it is almost surely continuous, and with respect to F;, both
£(t,w) and [£ fo s,w)]?ds are martingales.

If f is bounded then
2

explalt) = 5 [ 1w

is a martingale with respect to F;. In general (if f is unbounded) it may only be a
super-martingale (Fatou’s lemma).

Example: Let us calculate (s)dx(s). One can pretend that x(s) is bounded. Then
0

| #(6)aae) = tim 3 alt) w(t40) ~ (1)

= tim o Sl (t511) + (e (o (t501) — (1)

i 2 (1) — 2()(w(t0) — (t))]
= tim & S [(ot00)” — (%) — T g Sty 4) — (1))
= St ~1

In other words dx(t)? = 2z(t)dx(t) + dt. More generally 1to’s formula says

df (x(t)) = f'(x(t))dx(t) + %f”(w(t))dt
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Sketch of proof.

f (1)) Zf tj+1)) = f(x(t;))

NZf (tj+1)) —z(t;)] + 5 Zf” 2(tj+1)) — =(t5))?
+ZO |( j+1—l'(ty>|2)

The first term goes to fo x(s))dz(s). The third term goes to 0, because E[|z(t) —
2(s)[3] ~ ¢2. The second term goes to

1 ‘ 1
3 | o



