
Stochastic Integrals.

In defining the integral

I =

∫ T

0

f(s)dx(s)

the Lebesgue theory assumes that f(·) is a bounded continuous function and x(s) is a
function of bounded variation so that dx can be thought of as a measure on [0, T ]. With
that we get the bound

(1) |I| ≤ sup
0≤s≤T

|f(s)|V ar[0,T ]x(·)

where

V ar[0,T ]x(·) = sup
P

n−1
∑

i=0

|x(ti+1) − x(ti)|

where P = {0 = t0 < t1 < t2 · · · < tn = T} is an arbitrary partition of [0, T ]. It is
calculated as the limit of the sum

In =
∑

f(x(τi))[x(ti+1) − x(ti)]

where ti ≤ τi ≤ ti+1 are arbitrary points. The estimate (1) comes from the worst possible
case where there are no cancellations and

|I| = lim |In| ≤

n−1
∑

i=0

|f(x(τi))||x(ti+1) − x(ti)|

≤ sup
0≤s≤T

|f(s)| lim
n→∞

n−1
∑

i=0

|x(ti+1) − x(ti)|

= sup
0≤s≤T

|f(s)|V ar[0,T ]x(·)

However if x(·) is random we can do better. Let x(·) be Brownian motion. we will define
the ”Wiener Stochastic Integral”

I(f) =

∫ T

0

f(s) dx(s)

Let us assume that f is a simple function f = fi on [ti ≤ t ≤ ti+1]. Then

I(f) =
∑

i

fi[x(ti+1) − x(ti)]

is a Gaussian random variable with mean 0 and variance

E[I(f)2] =
∑

i

|fi|
2(ti+1) − ti) =

∫ T

0

|f(t)|2dt
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If f is a square integrable function on [0, T ] it can be approximated by a sequence fn of
simple functions in L2[0, T ]. Then

lim
n,m→∞

E[|I(fn) − I(fm)|2] = lim
n,m→∞

∫ T

0

|fn(t) − fm(t)|2dt = 0

Hence
I(f) = lim

n→∞
I(fn)

exists on L2(P ) where the Brownian motion is defined so long as
∫

|f(t)|2dt < ∞. I(f)

has a Gaussian distribution with mean 0 and variance
∫ T

0
|f(t)|2dt. Note that each I(f)

is defined only almost surely as a member in L2(P ).

We need to do this because almost surely Brownian motion is NOT of bounded varia-
tion. Since Brownian paths are almost surely continuous, if they were of bounded variation,
then

lim
n→∞

∑

[x(ti+1) − x(ti)]
2 ≤ sup

i

|x(ti+1 − x(ti)|V ar[0,T ](x(·)) = 0

On the other hand

E[[
∑

[x(ti+1) − x(ti)]
2 − T ]2 = E[

∑

[[x(ti+1) − x(ti)]
2 − (ti+1 − ti)]

2]

=
∑

E[[x(ti+1) − x(ti)]
2 − (ti+1 − ti)]

2

=
∑

2(ti+1 − ti)
2

and therefore
∑

[x(ti+1) − x(ti)]
2 goes to T in L2 and not to 0.

In Wiener’s stochastic integral f(t) is a non-random function. But in Itô’s theory,
f(t, ω) can depend on the past history up to time t and not on the future. Consider a
partition 0 = t0 < t1 < · · · < tn = T . Functions fi(ω) that are bounded measurable with
respect to Fti

. Note that x(t) is a Brownian motion with respect to Ft. Then if

f(t, ω) =
∑

i

fi(ω)1[ti,ti+1)(t)

i.e. it equals fi on [ti, ti+1] then the natural definition of the integral is

S(f, [0, T ]) =

∫ T

0

f(s, ω)dx(s) =
n−1
∑

i=0

fi(ω)[x(ti+1) − x(ti)]

We denote the class of such f ’s by F. The increment (x(ti+1) − x(ti)) is independent of
Fti

and an easy computation yields

E[S(f, [0, T ]) = 0 and E[S(f, [0, T ]2] = E[

∫ T

0

f(s, ω)2ds]
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and if we define for tk ≤ t ≤ tk+1

ξ(t) = S(f, [0, t]) =

∫ t

0

f(s, ω)dx(s) =

k−1
∑

i=0

fi(ω)[x(ti+1) − x(ti)] + fk(ω)[x(t)− x(tk)]

then (ξ(t),Ft) is a martingale. It is square integrable and

ξ(t)2 −

∫ t

0

f(s, ω)2ds

is again a Ft martingale. From Doob’s inequality

E[[ sup
0≤t≤T

|ξ(t)|]2] ≤ 4E[

∫ T

0

|f(s, ω)|2ds]

In order to define the Itô stochastic integral for f we need to know if we can approximate
f by fn ∈ F in the sense that

E[

∫ T

0

|fn(s, ω)− f(s, ω)|2ds → 0

A function f : [0, T ]×Ω → R is progressively measurable if for every t ∈ [0, T ] the function
f(s, ω) : [0, t]×Ω → R is (jointly) measurable as a map of [[0, t]×Ω,B[0, t]×Ft] → [R,B(R)]
If f is progressively measurable then

∫ t

0

|f(s, ω)|2ds

is again progressively measurable and it makes sense to talk about square integrable pro-
gressively measurable functions, i.e. those for which

E

[
∫ T

0

|f(s, ω)|2 ds

]

< ∞

Let us call this class F2. We define stochastic integrals for such functions by the following
steps.

Step 1. We need to show that any f ∈ F2 can be approximated by fn ∈ F such that

lim
n→∞

‖fn − f‖2
[0,T ] = E

[
∫ T

0

|fn(s, ω) − f(s, ω)|2 ds

]

= 0

It would then follow that ξn(t, ω)) =
∫ t

0
fn(s, ω)ds satisfies

lim
n,m→∞

E[[ sup
0≤t≤T

|ξn(t) − ξm(t)|]2] = 0
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There is then the limit ξ of ξn that is progressively measurable and almost surely contin-
uous. Moreover ξ(t) would be a martingale as would [ξ(t)]2 −

∫ t

0
[f(s, ω)]2ds.

Step 2. If f(t, ω) is uniformly bounded and continuous in t for almost all ω, then fn(t, ω) =

f( [nt]
n

, ω) will work.

Step 3. If f(t, ω) is bounded and progressively measurable then

fn(t, ω) =
1

h

∫ t

(t−h)∨0

f(s, ω)ds

is an almost surely continuous, bounded, progressively measurable approximation of f .

Step 4. Finally if f ∈ F2, we can truncate and choose fn = f if |f | ≤ n and fn = 0
otherwise. Then fn is clearly progressively measurable, bounded and approximates f . This
way for each f ∈ F2 we define

ξ(t, ω) =

∫ t

0

f(s, ω)dx(s)

that satisfies the properties: it is almost surely continuous, and with respect to Ft, both
ξ(t, ω) and [ξ(t, ω)]2 −

∫ t

0
[f(s, ω)]2ds are martingales.

If f is bounded then

exp[λx(t) −
λ2

2

∫ t

0

[f(t, ω)]2ds]

is a martingale with respect to Ft. In general (if f is unbounded) it may only be a
super-martingale (Fatou’s lemma).

Example: Let us calculate
∫ t

0
x(s)dx(s). One can pretend that x(s) is bounded. Then

∫ t

0

x(s)dx(s) = lim
P

∑

x(tj)(x(tj+1) − x(tj))

= lim
P

1

2

∑

[(x(tj+1) + x(tj)(x(tj+1) − x(tj)]

− lim
P

1

2

∑

[(x(tj+1) − x(tj)(x(tj+1) − x(tj)]

= lim
P

1

2

∑

[(x(tj+1)
2 − x(tj)

2] − lim
P

1

2

∑

(x(tj+1) − x(tj))
2

=
1

2
[x(t)2 − t]

In other words dx(t)2 = 2x(t)dx(t) + dt. More generally Itô’s formula says

df(x(t)) = f ′(x(t))dx(t) +
1

2
f ′′(x(t))dt
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Sketch of proof.

f(x(t))− f(x(s)) =
∑

j

f(x(tj+1)) − f(x(tj))

≃
∑

f ′(x(tj))[x(tj+1)) − x(tj)] +
1

2

∑

f ′′(x(tj))[x(tj+1)) − x(tj)]
2

+
∑

O(|x(tj+1 − x(tj)|
2)

The first term goes to
∫ t

0
f ′(x(s))dx(s). The third term goes to 0, because E[|x(t) −

x(s)|3] ≃ t
3
2 . The second term goes to

1

2

∫ t

0

f ′′(x(s))ds

5


