
8. Stochastic Differential Equations.

Brownian motion has the property that the distribution of x(t + h) − x(t) given the σ-
field Ft of information up to time t, is Gaussian with mean 0 and variance h. One can
visualize a Markov process x(t) for which the corresponding conditional distribution of the
increment is approximately Gaussian with mean hb(t, x(t)) and variance ha(t, x(t)). The
Markovian nature is reflected in that the conditional distribution depends only on t, x(t)
and not on the information about x(s) for all times s ≤ t. x(t) can be one dimensional
or d-dimensional. In such a case b(t, x) would be a d-dimensional vector and a(t, x) would
be a symmetric positive semi-definite matrix ha(t, x(t)) would then be approximately the
conditional variance covariance matrix of the vector x(t + h) − x(t). If we do have a
p(s, x, t, dy) which are the transition probabilities of our Markov process,

b(t, x) = lim
h→0

1

h

∫

(yi − xi)p(t, x, t + h, dy)

and

(1) ai,j(t, x) = lim
h→0

1

h

∫

(yi − xi)(yj − xj)p(t, x, t + h, dy)

One has to be a little careful. The moments may not exist. May be safer to truncate.

(2) b(t, x) = lim
h→0

1

h

∫

{y:‖y−x|≤1}

(yi − xi)p(t, x, t + h, dy)

and

ai,j(t, x) = lim
h→0

1

h

∫

{y:‖y−x‖≤1}

(yi − xi)(yj − xj)p(t, x, t + h, dy)

Why 1? Should not matter. For any ǫ > 0,

(3) lim
h→0

1

h

∫

{y:‖y−x‖≥ǫ}

p(t, x, t + h, dy) = 0

Or one can assume that for some δ > 0,

lim
h→0

1

h

∫

‖y − x‖2+δp(t, x, t + h, dy) = 0

which will imply (3) and avoid the necessity of truncation in (1) and (2).

One way to generate a Gaussian random vector Y with mean hb and covariance ha

is to start from a Gaussian vector X with mean 0 and covariance hI and do a linear
transformation.

Y = hb + σX
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where σσ∗ = a. Then E[Y ] ≃ hb and V ar〈θ, Y 〉 = V ar〈θ, σY 〉 = V ar〈σ∗θ, Y 〉 =
h‖σ∗θ‖2 = h〈θσσ∗θ〉 = h〈θ, aθ〉. One can choose σ to be the positive semi-definite sym-
metric square root of a.

This leads to the possible definition

dx(t) = b(t, x(t))dt + σ(t, x(t))dβ(t); x(0) = x

Or we can write it in integrated form

(4) x(t) = x +

∫ t

0

σ(s, x(s))dβ(s) +

∫ t

0

b(s, x(s))ds

We are given functions b(t, x) : [0, T ] × Rd → Rd and σ(t, x) : [0, T ] × Rd → Md×d. d

dimensional Brownian motion β(t) on (Ω,Ft, P ). We want to existence and uniqueness of
progressively measurable, almost surely continuos functions x(t, ω) that satisfy (4). The
assumptions that we will make on b and σ are the following.

‖b(t, x) − b(t, y)‖ ≤ C‖x − y‖; ‖σ(t, x)− σ(t, y)‖ ≤ C‖x − y‖

and
‖b(t, x)‖ ≤ C, ‖σ(t, x)‖ ≤ C

First let us prove uniqueness. Let there be two solutions x(t) and y(t). Then

x(t) − y(t) =

∫ t

0

[σ(s, x(s))− σ(s, y(s))]dβ(s) +

∫ t

0

[b(s, x(s))− b(s, y(s))]ds

Since σ and b are bounded x(t) and y(t) have finite second moments. Denoting by ∆(t) =
E[‖x(t)− y(t)‖2],

∆(t) ≤ 2E

[

[

∫ t

0

[σ(s, x(s))− σ(s, y(s))]dβ(s)
]2

]

+ 2E

[

[

∫ t

0

[b(s, x(s))− b(s, y(s))]ds
]2

]

≤ 2E

[
∫ t

0

[‖σ(s, x(s))− σ(s, y(s))‖2ds

]

+ 2TE

[
∫ t

0

‖b(s, x(s))− b(s, y(s))‖2ds

]

≤ C(T )

∫ t

0

∆(s)ds

It is easy to see that ∆(t) ≤ C(T ). By induction

∆(t) ≤
[C(T )]n+1tn

n!

for every n and is therefore 0.
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Now we turn to existence. We take x0(t) ≡ x and then by induction define

(5) xn(t) = x +

∫ t

0

σ(s, xn−1(s))dβ(s) +

∫ t

0

b(s, xn−1(s))ds

Denoting by zn(t) the difference xn(t) − xn−1(t), we have

zn+1(t) =

∫ t

0

[σ(s, xn(s)) − σ(s, xn−1(s))]dβ(s) +

∫ t

0

[b(s, xn(s)) − b(s, xn−1(s))]ds

Denoting by ∆n(t) = E[‖zn(t)‖2] we have just as in the proof of uniqueness

∆n+1(t) ≤ C(T )

∫ t

0

∆n(s)ds

with ∆1(t) ≤ C(T ). Again by induction,

∆n+1(t) ≤ [C(T )]n+1 tn

n!

This implies
∞
∑

n=1

sup
0≤t≤T

√

∆n(t) < ∞

By Doob’s inequality for martingales for the stochastic integral term and stand estimate
for the ordinary intgral

E[ sup
0≤t≤T

‖zn+1(t)‖
2] ≤ C(T )

∫ T

0

∆n(t)dt

proving that
∑

zn(t) converges uniformly with probability 1. Therefore

x(t) = lim
n→∞

xn(t)

exists and satisfies (4). The same estimates allow us to compare two solutions x(t), y(t)
for the same equation but starting from different points x and y.

E[ sup
0≤t≤T

‖x(t) − y(t)‖2] ≤ C(T )‖x − y‖2

We can start from x(s) = x and solve for t ≥ s. We denote by p(s, x, t, A) the probability

p(s, x, t, A) = P [x(t) ∈ A|x(s) = x]

We can start from x(s) = x(s, ω) a random variable that is Fs measurable and nothing
would change. If we stop at s and then find a new solution for t ≥ s starting from x(s, ω)

3



by uniqueness this is the same as x(t, ω). The conditional distribution of x(t, ω) given Fs

is the same as the distribution of a solution starting from x(s, ω) at time s.

P [x(t) ∈ A|Fs] = p(s, x(s, ω), t, A)

which proves the Markov property. The strong Markov property is similar and we use the
strong Markov property of the Brownian motion. It is not hard now to prove that (1) and
(2) hold.

1

h
E‖x(h) − b(0, x)h] = o(1)ash → 0

as is
1

h
E‖x(h) − b(0, x)h− σ(0, h)β(h)‖2]

Exponential Martingales. For any stochastic integral

x(t) =

∫

e(s, ω)dβ(s)

with bounded σ

exp[x(t) −
1

2

∫ t

0

‖e(s, ω)‖2ds]

is a martingale. Star with simple functions. Pass to the limit. Get bounds to prove uniform
integrability. If xn(t) is an approximation using a simple function en(s, ω) having the same
bound C as e(s, ω),

E

[

exp
[

2[xn(t) −
1

2

∫ t

0

‖en(s, ω)‖2ds]
]

]

≤ E

[

exp
[

[2xn(t) −
1

2

∫ t

0

‖2en(s, ω)‖2ds] + Ct
]

]

≤ eCt

and this is enough. For any solution x(t) of SDE (4) and any θ ∈ Rd

exp[〈θ, x(t)− x(0)〉 −

∫ t

0

〈θ, b(s, x(s))〉ds−
1

2

∫ t

0

〈θ, a(s, x(s))θ〉ds]

is a martingale.
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