
7. Brownian Motion as a Markov process.

As a process with independent increments given Fs, x(t) − x(s) is independent and has a
normal distribution with mean 0 and variance t − s. Therefore

P [x(t) ∈ A|Fs] =

∫

A

p(t − s, x(s), y)dyy

where

p(t, xy) =
1

√

2π(t − s)
e

(y−x)2

2(t−s)

The transition probability density p(t, x, y) satisfies

∫

p(s, x, y)p(t, y, z)dy = p(t + s, x, z)

and p(t − s, x, y) satisfies in s, x the backward heat equation

ps +
1

2
pxx = 0

and in t, y, the forward heat equation

pt =
1

2
pyy

In particular the solution of

us +
1

2
uxx = 0, u(t, x) = f(x)

is given by

u(s, x) =

∫

p(t − s, x, y)f(y)dy

and can be interpreted as
u(s, x) = E[f(x(t))|x(s) = x]

On the other hand the solution of

ut =
1

2
uyy, u(s, y) = g(y)

is solved for t > s by

u(t, y) =

∫

p(t − s, x, y)g(x)dx

and has the interpretation as the probability density of the distribution of Brownian motion
at time t when it starts form a random point x = x(s) at time s, the distribution of x(s)
having density g(x).
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One can check these things by differentiating under the integral sign and the boundary
condition is verifies by checking that

∫

p(t, x, y)dy = 1 and

lim
t→0

∫

|x−y|≥ǫ

p(t, x, y)dy = 0

There is an important connection between Brownian motion and the operator δt + 1

2
δ2

x

besides the ones described above.

Fact. Let u(t, x) be a nice function. Smooth and well behaved at ∞. Let f(t, x) =

ut + 1

2
uxx. Then u(t, x(t)) −

∫ t

s
f(σ, x(σ))dσ is a maringale with respect to Brownian

motion starting from any point x at time s.

Proof. We need to prove

E[u(t, x(t))− u(s, (x(s))−

∫ t

s

f(σ, x(σ))dσ|Fσ] = 0

This is just verifying

∫

u(t, y)p(t − s, x, y)dy − u(s, x)−

∫ t

s

∫

f(σ, y)p(σ − s, x, y)dydσ = 0

It is enough to check for functions of the form u(t, x) = g(t)eiξ x. Then

f(t, x) = [g′(t) −
ξ2

2
g(t)]ei ξ x

Note that
∫

ei ξ yp(t, x, y) = ei ξ xe−
ξ2t

2

We need to check

ei ξ xe−
ξ2(t−s)

2 g(t) − ei ξ xg(s) =

∫ t

s

ei ξ x[g′(σ) − g(σ)
ξ2

2
]e−

ξ2(σ−s)
2 dσ

or

e−
ξ2(t−s)

2 g(t) − g(s) =

∫ t

s

[g′(σ) − g(σ)
ξ2

2
]e−

ξ2(σ−s)
2 dσ

which is easily carried out. A consequence is the maximum principle. For any solution u

of ut + 1

2
uxx = 0, u(t, x(t)) is a martingale. In particular

u(s, x) = E[u(t, x(t))|Fs] =

∫

u(t, y)p(t− s, x, y)dy

If u(t, y) ≥ 0, then so is u(s, y) for s ≤ t. In particular this proves the uniqueness of
solutions.
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One can have functions defined in a region. For instance s ≤ t ≤ T, |x| ≤ 1. Then
τ = min{T, inf{t : |x(t)| ≥ 1}} is a stopping time and

E[u(τ, x(τ))− u(s, x(s))−

∫ τ

s

f(σ, x(σ))dσ|x(s) = x] = 0

There are multi dimensional versions of Brownian motion. Just take independent versions
{xj(t); 1 ≤ j ≤ d} to get the d-diemsional version.

p(t, {xj}, {yj}) = Πd
j=1

p(t, xj, yj)

The backward differential equation is

∂

∂t
+

1

2
∆ =

∂

∂t
+

1

2

d
∑

j=1

∂2

∂x2

j
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