Section 10. Connections with PDE.

We have a progressively measurable stochastic process $x(t, \omega)$ on $\left(\Omega, \mathcal{F}_{t}, P\right)$ such that the paths are continuous with probability 1 . We have bounded progressively measurable functions $b(t, \omega)$ and $a(t, \omega)$ with $a(t, \omega) \geq 0$. Moreover

$$
\begin{equation*}
y(t)=x(t)-x(0)-\int_{0}^{t} b(s, \omega) d s \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{2}(t)-\int_{0}^{t} a(s, \omega) d s \tag{2}
\end{equation*}
$$

are martingales with respect to $\left(\Omega, \mathcal{F}_{t}, P\right)$. It follows that

$$
\left.\exp \left[\theta\left[x(t)-x(0)-\int_{0}^{t} b(s, \omega) d s\right]-\frac{\theta^{2}}{2} \int_{0}^{t} a(s, \omega) d s\right]\right]
$$

is a martingale for all real θ. We proved it for the special case of $b=0$ and $a=1$. If we are in d dimensions $x(t, \omega)$ and $b(t, \omega)$ would be R^{d} valued and $a=\left\{a_{i, j}\right\}$ would be a positive semi-definite matrix. The conclusion would then be

$$
\begin{equation*}
\left.\exp \left[\langle\theta, x(t)-x(0)\rangle-\int_{0}^{t}\langle\theta, b(s, \omega)\rangle d s\right]-\frac{1}{2} \int_{0}^{t}\langle\theta, a(s, \omega) \theta\rangle d s\right] \tag{3}
\end{equation*}
$$

are martingales with respect to $\left(\Omega, \mathcal{F}_{t}, P\right)$. From this it would then follow that

$$
\begin{equation*}
\exp \left[f(t, x(t))-f(0, x(0))-\int_{0}^{t}\left[e^{-f(s, x(s))}\left(\frac{\partial}{\partial t}+L_{s, \omega} e^{f}\right)(s, x(s))\right] d s\right] \tag{4}
\end{equation*}
$$

is again a martingale with respect to $\left(\Omega, \mathcal{F}_{t}, P\right)$ for any smooth f. Replacing f by $\langle\theta, x\rangle+$ $\lambda f(t, x)$ yields more martingales.

$$
\exp \left[\lambda[f(t, x(t))-f(0, x(0))]+\langle\theta, x(t)-x(0)\rangle-\int_{0}^{t}\left[\langle\tilde{\theta}, \tilde{b}(s, \omega)\rangle d s-\frac{1}{2} \int_{0}^{t}\langle\tilde{\theta}, \tilde{a}(s, \omega), \tilde{\theta}\rangle\right] d s\right]
$$

Here $\tilde{\theta}=[\lambda, \theta], \tilde{b}(s, \omega)=\left[f_{s}+\left(L_{s, \omega} f\right)(s, x(s)), b(s, \omega)\right]$,

$$
\tilde{a}(s, \omega)=\left(\begin{array}{cc}
\langle a(s, \omega) \nabla f(s, x(s)), \nabla f(s, x(s))\rangle & {[a(s, \omega) \nabla f(s, x(s))]} \\
{[a(s, \omega) \nabla f(s, x(s))]^{t}} & a(s, \omega)
\end{array}\right)
$$

and $L_{s, \omega} f$ is the operator

$$
\left(L_{s, \omega} f\right)(s, x)=\frac{1}{2} \sum_{i, j} a_{i, j}(s, \omega)\left(D_{x_{i}} D_{x_{j}} f\right)(s, x)+\sum_{j} b_{j}(s, \omega)\left(D_{x_{j}} f\right)(s, x)
$$

With $x_{0}(t)=f(t, x(t))$, we define the stochastic integral

$$
z(t)=\int_{0}^{t} d x_{0}(s)-\int_{0}^{t}\langle\nabla f(s, x(s)), d x(s)\rangle
$$

Since \tilde{a} applied to $[1,-\nabla f(s, x(s))]$ is $0, z(t)$ is of bounded variation and

$$
z(t)=z(0)+\int_{0}^{t} f_{s}(s, x(s)) d s+\int_{0}^{t}\left(L_{s, \omega} f\right)(s, x(s))-\int_{0}^{t}\langle b(s, \omega),(\nabla f)(s, x(s))\rangle d s
$$

This yields Itô's formula

$$
d f(t, x(t))=f_{t}(t, x(t)) d t+(\nabla f)(t, x(t)) d x(t)+\frac{1}{2} \sum_{i, j} a_{i, j}(s, \omega)\left(D_{x_{i}} D_{x_{j}} f\right)(t, x(t)) d t
$$

Why does (3) imply (4) ? To see this let us, for simplicity, suppose that $d=1$ and f does not depend on t. we can replace θ by $i \theta$. This gives us the martingales

$$
\left.M_{\theta}(t)=\exp \left[i \theta\left[x(t)-x(0)-\int_{0}^{t} b(s, \omega) d s\right]+\frac{\theta^{2}}{2} \int_{0}^{t} a(s, \omega) d s\right]\right]
$$

We can take

$$
\left.\left.A(t)=\exp \left[i \theta \int_{0}^{t} b(s, \omega) d s\right]-\frac{\theta^{2}}{2} \int_{0}^{t} a(s, \omega) d s\right]\right]
$$

then the martingale $M(t) A(t)-\int_{0}^{t} M(s) d A(s)$ which reduces to

$$
f(x(t))-f(x(0))-\int_{0}^{t}\left[\left(L_{s, \omega} f\right)(s, x(s))\right] d s
$$

with $f(x)=e^{i \theta x}$ is again a martingale. By Fourier integral representation any smooth function is a super position of exponentials $e^{i \theta x}$. The martingale property extends by linearity. Therefore

$$
f(x(t))-f(x(0))-\int_{0}^{t}\left[\left(L_{s, \omega} f\right)(s, x(s))\right] d s
$$

are martingales. Taking e^{f} instead of f we will get

$$
N(t)=e^{f(x(t))}-e^{f(x(0))}-\int_{0}^{t}\left(L_{s, \omega} e^{f}\right)(x(s)) d s
$$

are martingales. Now take

$$
A(t)=\exp \left[-f(x(0))-\int_{0}^{t}\left[\left(e^{-f} L_{s, \omega} e^{f}\right)(x(s)) d s\right]\right.
$$

and

$$
N(t) A(t)-\int_{0}^{t} N(s) d A(s)
$$

reduces to what we want. The important thing here is that a continuous process $x(t, \omega)$ with $b(t, \omega)$ and $a(t, \omega)$ representing the conditional infinitesimal mean and covariance in the sense described above is connected very closely to the operator $L_{s, \omega}$. Of course for $L_{s, \omega}$ to be really an operator it is important to have $b(s, \omega)=b(s, x(s, \omega))$ and $a(s, \omega)=$ $a(s, x(s, \omega)$. Then the process is expected to be a Markov process and could have arisen as a solution of a stochastic differential equation

$$
d x(t)=\sigma(t, x(t)) \cdot d \beta(t)+b(t, x(t)) d t
$$

where $\sigma \sigma^{*}=a$.
There are a few simple formal rules that summarize Itô's formula. Suppose $\beta(t)$ is a Brownian motion then

$$
d \beta(t)^{2}=d t
$$

$\left\{\beta_{i}(\cdot)\right\}$ are independent Brownian Motions

$$
d \beta_{i}(t) d \beta_{j}(t)=\delta_{i, j} d t
$$

and $(d t)^{2}=d \beta(t) d t=0$. Consequently, if

$$
d x(t)=a(t, \omega) d t+\sum_{i} \sigma_{i}(t, \omega) d \beta_{i}
$$

and

$$
d y(t)=b(t, \omega) d t+\sum_{i} c_{i}(t, \omega) d \beta_{i}
$$

then

$$
d x(t) d y(t)=\left[\sum_{i} \sigma_{i}(t, \omega) c_{i}(t, \omega)\right] d t
$$

Finally

$$
d f(x(t))=(\nabla f)(x(t)) \cdot d x(t)+\frac{1}{2} \sum_{i, j}\left(D_{x_{i}} D_{x_{j}} f\right)\left(d x_{i}(t) d x_{j}(t)\right)
$$

Given $a(s, x)$, and $b(s, x)$, let us define for each s the differential operator

$$
L_{s}=\frac{1}{2} \sum_{i, j} a_{i, j}(s, x) D_{x_{i}} D_{x_{j}}+\sum_{j} b_{j}(s, x) D_{x_{j}}
$$

Let $u(s, x)$ be a solution of the partial differential equation

$$
\frac{\partial u}{\partial s}+\left(L_{s} u\right)(s, x)+g(s, x)=0 ; \quad u(T, x)=f(x)
$$

Then if $x(t, \omega)$ is any almost surely continuous process satisfying (1), (2) and $P[x(0)=$ $x]=1$, then

$$
u(0, x)=E^{P}\left[\int_{0}^{T} g(s, x(s)) d s+f(x(T))\right]
$$

Proof is elementary.

$$
\begin{aligned}
d u(t, x(t)) & =u_{t}(t, x(t)) d t+(\nabla u)(x(t)) \cdot d x(t)+\frac{1}{2} \sum_{i, j}\left(D_{x_{i}} D_{x_{j}} f\right)\left(d x_{i}(t) d x_{j}(t)\right) \\
& =g(t, x(t)) d t+\left\langle\nabla u, \sigma^{*}(t, x(t)) d \beta(t)\right\rangle
\end{aligned}
$$

Therefore

$$
u(t, x(t))-u(0, x(0))+\int_{0}^{t} g(s, x(s))
$$

is a martingale. Equate expectations at $t=0$ and $t=T$. There are other relations. If

$$
\frac{\partial u}{\partial s}+\left(L_{s} u\right)(s, x)+V(s, x) u(s, x)+g(s, x)=0 ; \quad u(T, x)=f(x)
$$

then

$$
u(0, x)=E^{P}\left[\int_{0}^{T} g(s, x(s)) \exp \left[\int_{0}^{s} V(\tau, x(\tau)) d \tau\right] d s+\exp \left[\int_{0}^{T} V(\tau, x(\tau)) d \tau\right] f(x(T))\right]
$$

Ex: Work it out. Enough to show that

$$
M(t)=u(t, x(t)) A(t)+B(t)
$$

is a martingale where

$$
A(t)=\exp \left[\int_{0}^{t} V(s, x(s)) d s\right]
$$

and

$$
B(t)=\int_{0}^{t} \exp \left[\int_{0}^{s} V(\tau, x(\tau)) d \tau\right] g(s, x(s)) d s
$$

Calculate $d M(t)$ and keep only the $d t$ terms.

$$
\begin{aligned}
d M(t) & =A(t) d u(t, x(t))+u(t, x(t)) d A(t)+d B(t) \\
& =A(t)\left(u_{t}+L_{t} u\right) d t+u(t, x(t)) A(t) V(t, x(t))+A(t) g(t, x(t)) \\
& =A(t)\left[u_{t}(t, x(t))+\left(L_{t} u\right)(t, x(t))+u(t, x(t)) V(t, x(t))+g(t, x(t))\right] d t \\
& =0
\end{aligned}
$$

Black and Scholes: If $u(t, x)$ solves

$$
u_{t}+\frac{\sigma^{2} x^{2}}{2} u_{x x}=0
$$

and $x(t)$ is the solution of

$$
d x(t)=\sigma x(t) d \beta(t)+b(t, x(t)) d t
$$

then

$$
u(t, x(t))-u(s, x(s))=\int_{s}^{t} u_{x}(\tau, x(\tau)) d x(\tau)
$$

Modify to take care of interest rate r. We need, in prices discounted to current value,

$$
e^{-r t} u(t, x(t))-e^{-r s} u(s, x(s))=\int_{s}^{t} e^{-r \tau} u_{x}(\tau, x(\tau))[d x(\tau)-r x(\tau) d \tau]
$$

to keep the hedge. In other words we need

$$
d\left[e^{-r t} u(t, x(t))\right]=e^{-r t}\left[u_{t}-r u+u_{x} d x+\frac{\sigma^{2} x^{2}}{2} u_{x x} d t\right]=e^{-r t}\left[u_{x} d x-r x u_{x} d t\right]
$$

or a solution of

$$
u_{t}+\frac{\sigma^{2} x^{2}}{2} u_{x x} d t+r x u_{x}-r u=0
$$

with $u(T, x)=f(x)$.
We can solve equations in domains as well. The solution of

$$
L u=\frac{1}{2} \sum_{i, j} a_{i, j}(x) D_{x_{i}} D_{x_{j}} u+\sum b_{j}(x) D_{x_{j}} u=0 \quad \text { for } \quad x \in \mathbf{D}
$$

with $u=f$ on $\partial \mathbf{D}$, is represented as

$$
u(x)=E_{x}[f(x(\tau)]
$$

where τ is the stopping time

$$
\tau=\inf [t: x(t) \notin \mathbf{D}]
$$

and $E_{x}[]$ refers to expectation relative to the diffusion process corresponding to L starting from the point $x \in \mathbf{D}$.

There is not that much conceptual difference between the time independent and the time dependent cases. We can always add an extra coordinate x_{0} and take $b_{0} \equiv 1$ and $a_{0, j} \equiv 0$ for all j. Then we changed

$$
u_{t}+L_{t} u=u_{t}+\frac{1}{2} \sum_{i, j} a_{i, j}(t, x) D_{x_{i}} D_{x_{j}} u+\sum b_{j}(t, x) D_{x_{j}} u
$$

to

$$
\tilde{L} u=\frac{1}{2} \sum_{i, j=1}^{d} a_{i, j}\left(x_{0}, x\right) D_{x_{i}} D_{x_{j}} u+\sum_{j=1}^{d} b_{j}\left(x_{0}, x\right) D_{x_{j}} u+D_{x_{0}} u
$$

The matrix \tilde{a} is now degenerate.
The process starting form L can be defined through PDE. Solve

$$
\begin{equation*}
u_{s}+L_{s} u=0 \quad \text { for } \quad s \leq t \quad \text { and } \quad u(t, x)=f(x) \tag{5}
\end{equation*}
$$

Represent

$$
u(s, x)=\int f(y) p(s, x, t, y) d y
$$

Show $p \geq 0$, satisfies Chapman-Kolmogorov equations and is nice enough to be the transition probabilities of a process with continuous paths. This will work if a, b are bounded and Hölder continuous and a is uniformly elliptic.

$$
\sum_{j}\left|b_{j}(t, x)\right| \leq C
$$

for some $C<\infty$. For some C and $\alpha>0$,

$$
\sum_{i, j}\left|a_{i, j}(t, x)-a_{i, j}(t, y)\right|+\sum_{j}\left|b_{j}(t, x)-b_{j}(t, y)\right| \leq C|x-y|^{\alpha}
$$

and

$$
\sum_{i, j}\left|a_{i, j}(t, x)-a_{i, j}(s, x)\right|+\sum_{j}\left|b_{j}(t, x)-b_{j}(s, x)\right| \leq C|s-t|^{\alpha}
$$

Finally for some $0<c \leq C<\infty$,

$$
c \sum_{j} \xi_{j}^{2} \leq \sum_{i, j} a_{i, j}(t, x) \xi_{i} \xi_{j} \leq C \sum \xi_{j}^{2}
$$

SDE may not work here unless $\alpha=1$. But any process related to $[a, b]$ by (1) and (2) will be unique and be the same as the one coming from PDE. Because the PDE solution $u(t, x)$ of (5) will still have the property that $u(t, x(t))$ is a martingale with respect to any such process.

