
Section 10. Connections with PDE.

We have a progressively measurable stochastic process x(t, ω) on (Ω,Ft, P ) such that
the paths are continuous with probability 1. We have bounded progressively measurable
functions b(t, ω) and a(t, ω) with a(t, ω) ≥ 0. Moreover

(1) y(t) = x(t) − x(0) −

∫ t

0

b(s, ω)ds

and

(2) y2(t) −

∫ t

0

a(s, ω)ds

are martingales with respect to (Ω,Ft, P ). It follows that

exp

[

θ[x(t) − x(0) −

∫ t

0

b(s, ω)ds]−
θ2

2

∫ t

0

a(s, ω)ds]

]

is a martingale for all real θ. We proved it for the special case of b = 0 and a = 1. If we are
in d dimensions x(t, ω) and b(t, ω) would be Rd valued and a = {ai,j} would be a positive
semi-definite matrix. The conclusion would then be

(3) exp

[

〈θ, x(t)− x(0)〉 −

∫ t

0

〈θ, b(s, ω)〉ds]−
1

2

∫ t

0

〈θ, a(s, ω)θ〉ds

]

are martingales with respect to (Ω,Ft, P ). From this it would then follow that

(4) exp

[

f(t, x(t))− f(0, x(0))−

∫ t

0

[e−f(s,x(s))(
∂

∂t
+ Ls,ωef )(s, x(s))]ds

]

is again a martingale with respect to (Ω,Ft, P ) for any smooth f . Replacing f by 〈θ, x〉+
λf(t, x) yields more martingales.

exp

[

λ[f(t, x(t))− f(0, x(0))]+ 〈θ, x(t)− x(0)〉−

∫ t

0

[〈θ̃, b̃(s, ω)〉ds−
1

2

∫ t

0

〈θ̃, ã(s, ω), θ̃〉]ds

]

Here θ̃ = [λ, θ], b̃(s, ω) = [fs + (Ls,ωf)(s, x(s)), b(s, ω)],

ã(s, ω) =

(

〈a(s, ω)∇f(s, x(s)),∇f(s, x(s))〉 [a(s, ω)∇f(s, x(s))]
[a(s, ω)∇f(s, x(s))]t a(s, ω)

)

and Ls,ωf is the operator

(Ls,ωf)(s, x) =
1

2

∑

i,j

ai,j(s, ω)(Dxi
Dxj

f)(s, x) +
∑

j

bj(s, ω)(Dxj
f)(s, x)
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With x0(t) = f(t, x(t)), we define the stochastic integral

z(t) =

∫ t

0

dx0(s) −

∫ t

0

〈∇f(s, x(s)), dx(s)〉

Since ã applied to [1,−∇f(s, x(s))] is 0, z(t) is of bounded variation and

z(t) = z(0) +

∫ t

0

fs(s, x(s))ds +

∫ t

0

(Ls,ωf)(s, x(s))−

∫ t

0

〈b(s, ω), (∇f)(s, x(s))〉ds

This yields Itô’s formula

df(t, x(t)) = ft(t, x(t))dt + (∇f)(t, x(t))dx(t) +
1

2

∑

i,j

ai,j(s, ω)(Dxi
Dxj

f)(t, x(t))dt

Why does (3) imply (4) ? To see this let us, for simplicity, suppose that d = 1 and f does
not depend on t. we can replace θ by iθ. This gives us the martingales

Mθ(t) = exp

[

iθ[x(t) − x(0) −

∫ t

0

b(s, ω)ds] +
θ2

2

∫ t

0

a(s, ω)ds]

]

We can take

A(t) = exp

[

iθ

∫ t

0

b(s, ω)ds]−
θ2

2

∫ t

0

a(s, ω)ds]

]

then the martingale M(t)A(t)−
∫ t

0
M(s)dA(s) which reduces to

f(x(t))− f(x(0))−

∫ t

0

[(Ls,ωf)(s, x(s))]ds

with f(x) = eiθx is again a martingale. By Fourier integral representation any smooth
function is a super position of exponentials eiθx. The martingale property extends by
linearity. Therefore

f(x(t))− f(x(0))−

∫ t

0

[(Ls,ωf)(s, x(s))]ds

are martingales. Taking ef instead of f we will get

N(t) = ef(x(t)) − ef(x(0)) −

∫ t

0

(Ls,ωef )(x(s))ds

are martingales. Now take

A(t) = exp[−f(x(0)) −

∫ t

0

[(e−fLs,ωef )(x(s))ds]
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and

N(t)A(t) −

∫ t

0

N(s)dA(s)

reduces to what we want. The important thing here is that a continuous process x(t, ω)
with b(t, ω) and a(t, ω) representing the conditional infinitesimal mean and covariance in
the sense described above is connected very closely to the operator Ls,ω. Of course for
Ls,ω to be really an operator it is important to have b(s, ω) = b(s, x(s, ω)) and a(s, ω) =
a(s, x(s, ω). Then the process is expected to be a Markov process and could have arisen
as a solution of a stochastic differential equation

dx(t) = σ(t, x(t)) · dβ(t) + b(t, x(t))dt

where σσ∗ = a.
There are a few simple formal rules that summarize Itô’s formula. Suppose β(t) is a

Brownian motion then
dβ(t)2 = dt

{βi(·)} are independent Brownian Motions

dβi(t)dβj(t) = δi,jdt

and (dt)2 = dβ(t)dt = 0. Consequently, if

dx(t) = a(t, ω)dt +
∑

i

σi(t, ω)dβi

and
dy(t) = b(t, ω)dt +

∑

i

ci(t, ω)dβi

then
dx(t)dy(t) = [

∑

i

σi(t, ω)ci(t, ω)]dt

Finally

df(x(t)) = (∇f)(x(t)) · dx(t) +
1

2

∑

i,j

(Dxi
Dxj

f)(dxi(t)dxj(t))

Given a(s, x), and b(s, x), let us define for each s the differential operator

Ls =
1

2

∑

i,j

ai,j(s, x)Dxi
Dxj

+
∑

j

bj(s, x)Dxj

Let u(s, x) be a solution of the partial differential equation

∂u

∂s
+ (Lsu)(s, x) + g(s, x) = 0; u(T, x) = f(x)
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Then if x(t, ω) is any almost surely continuous process satisfying (1), (2) and P [x(0) =
x] = 1, then

u(0, x) = EP [

∫ T

0

g(s, x(s))ds + f(x(T ))]

Proof is elementary.

du(t, x(t)) = ut(t, x(t))dt + (∇u)(x(t)) · dx(t) +
1

2

∑

i,j

(Dxi
Dxj

f)(dxi(t)dxj(t))

= g(t, x(t))dt + 〈∇u, σ∗(t, x(t))dβ(t)〉

Therefore

u(t, x(t)) − u(0, x(0)) +

∫ t

0

g(s, x(s))

is a martingale. Equate expectations at t = 0 and t = T . There are other relations. If

∂u

∂s
+ (Lsu)(s, x) + V (s, x)u(s, x) + g(s, x) = 0; u(T, x) = f(x)

then

u(0, x) = EP

[
∫ T

0

g(s, x(s))exp[

∫ s

0

V (τ, x(τ))dτ ]ds + exp[

∫ T

0

V (τ, x(τ))dτ ]f(x(T ))

]

Ex: Work it out. Enough to show that

M(t) = u(t, x(t))A(t) + B(t)

is a martingale where

A(t) = exp[

∫ t

0

V (s, x(s))ds]

and

B(t) =

∫ t

0

exp[

∫ s

0

V (τ, x(τ))dτ ]g(s, x(s))ds

Calculate dM(t) and keep only the dt terms.

dM(t) = A(t)du(t, x(t)) + u(t, x(t))dA(t) + dB(t)

= A(t)(ut + Ltu)dt + u(t, x(t))A(t)V (t, x(t)) + A(t)g(t, x(t))

= A(t)[ut(t, x(t)) + (Ltu)(t, x(t)) + u(t, x(t))V (t, x(t)) + g(t, x(t))]dt

= 0

Black and Scholes: If u(t, x) solves

ut +
σ2x2

2
uxx = 0
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and x(t) is the solution of

dx(t) = σx(t)dβ(t) + b(t, x(t))dt

then

u(t, x(t))− u(s, x(s)) =

∫ t

s

ux(τ, x(τ))dx(τ)

Modify to take care of interest rate r. We need, in prices discounted to current value,

e−rtu(t, x(t))− e−rsu(s, x(s)) =

∫ t

s

e−rτux(τ, x(τ))[dx(τ)− r x(τ)dτ ]

to keep the hedge. In other words we need

d[e−rtu(t, x(t))] = e−rt[ut − ru + uxdx +
σ2x2

2
uxxdt] = e−rt[uxdx − r xuxdt]

or a solution of

ut +
σ2x2

2
uxxdt + r xux − ru = 0

with u(T, x) = f(x).

We can solve equations in domains as well. The solution of

Lu =
1

2

∑

i,j

ai,j(x)Dxi
Dxj

u +
∑

bj(x)Dxj
u = 0 for x ∈ D

with u = f on ∂D, is represented as

u(x) = Ex[f(x(τ)]

where τ is the stopping time
τ = inf[t : x(t) /∈ D]

and Ex[ ] refers to expectation relative to the diffusion process corresponding to L starting
from the point x ∈ D.

There is not that much conceptual difference between the time independent and the time
dependent cases. We can always add an extra coordinate x0 and take b0 ≡ 1 and a0,j ≡ 0
for all j. Then we changed

ut + Ltu = ut +
1

2

∑

i,j

ai,j(t, x)Dxi
Dxj

u +
∑

bj(t, x)Dxj
u

to

L̃u =
1

2

d
∑

i,j=1

ai,j(x0, x)Dxi
Dxj

u +

d
∑

j=1

bj(x0, x)Dxj
u + Dx0

u
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The matrix ã is now degenerate.

The process starting form L can be defined through PDE. Solve

(5) us + Lsu = 0 for s ≤ t and u(t, x) = f(x)

Represent

u(s, x) =

∫

f(y)p(s, x, t, y)dy

Show p ≥ 0, satisfies Chapman-Kolmogorov equations and is nice enough to be the tran-
sition probabilities of a process with continuous paths. This will work if a, b are bounded
and Hölder continuous and a is uniformly elliptic.

∑

j

|bj(t, x)| ≤ C

for some C < ∞. For some C and α > 0,

∑

i,j

|ai,j(t, x) − ai,j(t, y)|+
∑

j

|bj(t, x)− bj(t, y)| ≤ C|x − y|α,

and
∑

i,j

|ai,j(t, x) − ai,j(s, x)|+
∑

j

|bj(t, x) − bj(s, x)| ≤ C|s − t|α,

Finally for some 0 < c ≤ C < ∞,

c
∑

j

ξ2
j ≤

∑

i,j

ai,j(t, x)ξiξj ≤ C
∑

ξ2
j .

SDE may not work here unless α = 1. But any process related to [a, b] by (1) and (2) will
be unique and be the same as the one coming from PDE. Because the PDE solution u(t, x)
of (5) will still have the property that u(t, x(t)) is a martingale with respect to any such
process.
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