9. Diffusion proceses.

A diffusion process is a Markov process with continuous paths with values in some R?.
Given the past history up to time s the conditional distribution at a future time ¢ is given
by the transition probability p(s,z,t,dy). The {p(s,z,t,dy)} can not be arbitrary. They
have to be self consistent, i.e.satisfy the Chapman-Kolmogorov equations
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for s <t < u. Given such a p and an initial distribution a x at time s, one can construct
a Markov process for times ¢t > s with

Plxz(tg) € Ao, z(t1) € Ay, ..., xz(t,) € Ay
/ / / a(dz)p(s, , t1,dyr) - p(tn—1,Yn—1,tn, dyn)
AO Al n
for s =ty < t; < --- <t,. One needs some regularity conditions to make sure the paths

can be chosen to be continuous.
[yl st dy) < Cle = 510

for some k& > 1 and some ¢ > 0 is enough (Kolmogorov’s Theorem).

We would like to identify them through their infinitesimal means b(t,z) = {b;(¢,z)} and
infinitesimal covariances a(t,z) = {a; (¢, x)}. Roughly speaking we want

Elz;(t+h) —z;(t)|z(t) = x] = hbj(t,z) + o(h)
and
El(zi(t+h) — z;(t)(2;(t + h) — z;(t))|2(t) = 2] = ha; ;(t, z) + o(h)

with
Plz(s) € A] = a(A)

We saw that one way was to construct a solution of
dx(t) = o(t,z(t))dB(t) + b(t,z(t))dt; x(s) ==z

with o chosen to satisfy o (¢, z)o(t,z)* = a(t,x). We saw that under a Lipschitz condition
on o the solution, exisits, is unique and is a Markov process with continuous paths. It is
the diffusion corresponding to [a(t, x), b(t, z)].

1. What if we had two different square roots, both having unique solutions. Are the two
solutions ” same”?



2. What if I have two square roots one of them has a unique solution and the other does
not,

3. When do I have a Lipschitz square root for a?

If either a is Lipschitz and uniformly elliptic, i.e.
) &< aitw)Gg <0y &
J J

for some 0 < ¢ < C' < oo and all £ € R? or if {a; ;} are twice continuously differentiable
with a bound on the second derivatives, the positive semidefinite symmetric square root is
Lipschitz.

The basic idea is the matrix version of (v/f)" = # and |f'| < +/2C+/f for nonnegative

functions f. Here C is a bound on the second derivative. This follows from

0< flath) = J(@)+ hf'(x) + o f(€) < f(a) +hf(2) + S0

for all h. This implies
20f(x) > |f'(=)?

Suppose 01 and o2 are two square roots. 0107 = 0905 = a. Then assuming non-degeneracy,
(05 'o1][oy o1]* = I. In other words 0y = 0 where J(t,z) is orthogonal.

b(t,z(t))dt + oy (t, z(t))dB(t)
b(t,x(t))dt + oo(t, z(t))J (¢, z(t))dS(t)
b(t,x(t))dt + oo (t, x(t))ds (t)

with ' being a Brownian motion. Using a different square root is the same as using the
old square root with a different Brownian motion.

dx(t)

Suppose z(t,w) is a stochastic integral

o= [ o(s.) - dB(s) + / b, )ds

with 8(¢,w) being an n-dimensional Brownian motion with respect to (2, 7, P) and ¢ and
b are bounded progressively measurable functions. b: [0,T] x Q — R? and o : [0,T] x  —
M (d,n) the space of d x n matrices. In other words for 1 <i <d

ri(t) = g [ st o) + [ o,

Then one can define stochastic integrals with respect to z(t). We write
x(t) = y(t) + At)
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where {y;(t)} are martingales and A;( fo (s,w)ds are of bounded variation. The
integrals

z(s)z/o e(s,w)dy(s)

are well defined and are again martingales. e(s,w) can be M (k, d) valued and z(¢,w) would
be a R* valued martingale.

dz = edr = e[odf + bdt] = ecdf3 + ebdt

One verifies such things by checking for simple functions and then passing to the limit.
The martingale z(t) would have the property

t
x; ()} (t) — / [o(s,w)o™(s,w)];ids
0
are martingales. In other words
dr X dr = oo™dt = a(s,w)dt

and
dz x dz = eae™dt = (eo)(ec™)dt

Example. Consider the geometric Brownian Motion defined as the solution of

dx(t) = ow(t)dB(t) + p(t)dt

One could rewrite this as

= odf(t) + pdt
and expect
log z(t) = log x(0) + o 5(t) + put

But this would be incorrect because

dlogz(t) = d;é; - % [xzitl;]z [dl‘(t)]Q = dolt) o = ?

In other words

2(t) = explof(t) + (n— )1

Girsanov’s formula. Let z(¢) be a Brownian motion measure on some (2, %3, P). If b(z)
is a bounded function then

R(t,w) = exp[/o b(x(s))dz(s) — %/0 b2 (2(s))ds]
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is a Martingale and can be used to define a new measure ) that satisfies

dQ

d—P |ft - R(t7 LU)

x(t) will not be Brownian motion with respect to Q). But

£(t) / b(x(s))ds = y(t)

will be a Brownian motion with respect to Q.

This is not hard to see. With respect to P

expll | 0+ bla(s)da(s) ~ 5 [ 0+ ba(s)2s
are martingales. In other words

explBl(t) — x(0) - / ba(s))ds] — SIIR( )

are martingles. This means

t 2
explBlz(t) — x(0) / bar(s))ds) — 1)

are martingales with respect to (). So y(t) is Brownian motion under ). This argument
shows that if we have a solution of

y(t) ==z —l—/o b(y(s))ds + x(t)

where z(t) is Brownian motion then the distribution of y(¢) is uniquely determined as @
with Radon-Nikodym derivative R(¢,w) with respect to Brownian motion.

Take d = 1. Given a(t,z) and b(t,x) we want to define a diffusion process with the
property that (1) it has continuous paths, (2) given the history up to time ¢, the conditional
distribution of the future increment z(t + h) — x(t) has mean hb(t,x(t)) and variance
a(t,z(t)). How do we make this precise? We look for a process P on (C[0,T],F;) such
that

1. P[z(0) € A] = u(A) is given.
2. y(t) = fo ))ds is a martingale with respect to (C[0, T}, F;, P)

fo ))ds is a martingale with respect to (C[0,T], F, P)
Does this determine P uniquely? If so what other properties tie P to a,b, 7
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