9. Diffusion proceses.

A diffusion process is a Markov process with continuous paths with values in some R^{d}. Given the past history up to time s the conditional distribution at a future time t is given by the transition probability $p(s, x, t, d y)$. The $\{p(s, x, t, d y)\}$ can not be arbitrary. They have to be self consistent, i.e.satisfy the Chapman-Kolmogorov equations

$$
\int p(s, x, t, d y) p(t, y, u, A)=p(s, x, u, A)
$$

for $s<t<u$. Given such a p and an initial distribution αx at time s, one can construct a Markov process for times $t \geq s$ with

$$
\begin{aligned}
P\left[x\left(t_{0}\right) \in A_{0},\right. & \left.x\left(t_{1}\right) \in A_{1}, \ldots, x\left(t_{n}\right) \in A_{n}\right] \\
& =\int_{A_{0}} \int_{A_{1}} \cdots \int_{A_{n}} \alpha(d x) p\left(s, x, t_{1}, d y_{1}\right) \cdots p\left(t_{n-1}, y_{n-1}, t_{n}, d y_{n}\right)
\end{aligned}
$$

for $s=t_{0}<t_{1}<\cdots<t_{n}$. One needs some regularity conditions to make sure the paths can be chosen to be continuous.

$$
\int\|y-x\|^{k} p(s, x, t, d y) \leq C|t-s|^{1+\delta}
$$

for some $k>1$ and some $\delta>0$ is enough (Kolmogorov's Theorem).
We would like to identify them through their infinitesimal means $b(t, x)=\left\{b_{j}(t, x)\right\}$ and infinitesimal covariances $a(t, x)=\left\{a_{i, j}(t, x)\right\}$. Roughly speaking we want

$$
E\left[x_{j}(t+h)-x_{j}(t) \mid x(t)=x\right]=h b_{j}(t, x)+o(h)
$$

and

$$
E\left[\left(x_{i}(t+h)-x_{i}(t)\right)\left(x_{j}(t+h)-x_{j}(t)\right) \mid x(t)=x\right]=h a_{i, j}(t, x)+o(h)
$$

with

$$
P[x(s) \in A]=\alpha(A)
$$

We saw that one way was to construct a solution of

$$
d x(t)=\sigma(t, x(t)) d \beta(t)+b(t, x(t)) d t ; \quad x(s)=x
$$

with σ chosen to satisfy $\sigma(t, x) \sigma(t, x)^{*}=a(t, x)$. We saw that under a Lipschitz condition on σ the solution, exisits, is unique and is a Markov process with continuous paths. It is the diffusion corresponding to $[a(t, x), b(t, x)]$.

1. What if we had two different square roots, both having unique solutions. Are the two solutions " same"?
2. What if I have two square roots one of them has a unique solution and the other does not,
3. When do I have a Lipschitz square root for a ?

If either a is Lipschitz and uniformly elliptic, i.e.

$$
c \sum_{j} \xi_{j}^{2} \leq \sum a_{i, j}(t, x) \xi_{i} \xi_{j} \leq C \sum_{j} \xi_{j}^{2}
$$

for some $0<c \leq C<\infty$ and all $\xi \in R^{d}$ or if $\left\{a_{i, j}\right\}$ are twice continuously differentiable with a bound on the second derivatives, the positive semidefinite symmetric square root is Lipschitz.
The basic idea is the matrix version of $(\sqrt{f})^{\prime}=\frac{f^{\prime}}{2 \sqrt{f}}$ and $\left|f^{\prime}\right| \leq \sqrt{2 C} \sqrt{f}$ for nonnegative functions f. Here C is a bound on the second derivative. This follows from

$$
0 \leq f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(\xi) \leq f(x)+h f^{\prime}(x)+\frac{C}{2} h^{2}
$$

for all h. This implies

$$
2 C f(x) \geq\left|f^{\prime}(x)\right|^{2}
$$

Suppose σ_{1} and σ_{2} are two square roots. $\sigma_{1} \sigma_{1}^{*}=\sigma_{2} \sigma_{2}^{*}=a$. Then assuming non-degeneracy, $\left[\sigma_{2}^{-1} \sigma_{1}\right]\left[\sigma_{2}^{-1} \sigma_{1}\right]^{*}=I$. In other words $\sigma_{1}=\sigma_{2} J$ where $J(t, x)$ is orthogonal.

$$
\begin{aligned}
d x(t) & =b(t, x(t)) d t+\sigma_{1}(t, x(t)) d \beta(t) \\
& =b(t, x(t)) d t+\sigma_{2}(t, x(t)) J(t, x(t)) d \beta(t) \\
& =b(t, x(t)) d t+\sigma_{2}(t, x(t)) d \beta^{\prime}(t)
\end{aligned}
$$

with β^{\prime} being a Brownian motion. Using a different square root is the same as using the old square root with a different Brownian motion.

Suppose $x(t, \omega)$ is a stochastic integral

$$
x(t)=\int_{0}^{t} \sigma(s, \omega) \cdot d \beta(s)+\int_{0}^{t} b(s, \omega) d s
$$

with $\beta(t, \omega)$ being an n-dimensional Brownian motion with respect to $\left(\Omega, \mathcal{F}_{t}, P\right)$ and σ and b are bounded progressively measurable functions. $b:[0, T] \times \Omega \rightarrow R^{d}$ and $\sigma:[0, T] \times \Omega \rightarrow$ $M(d, n)$ the space of $d \times n$ matrices. In other words for $1 \leq i \leq d$

$$
x_{i}(t)=\sum_{j=1}^{n} \int_{0}^{t} \sigma_{i, j}(s, \omega) d \beta_{j}(s)+\int_{0}^{t} b_{i}(s, \omega) d s
$$

Then one can define stochastic integrals with respect to $x(t)$. We write

$$
x(t)=y(t)+A(t)
$$

where $\left\{y_{i}(t)\right\}$ are martingales and $A_{i}(t)=\int_{0}^{t} b_{i}(s, \omega) d s$ are of bounded variation. The integrals

$$
z(s)=\int_{0}^{t} e(s, \omega) d y(s)
$$

are well defined and are again martingales. $e(s, \omega)$ can be $M(k, d)$ valued and $z(t, \omega)$ would be a R^{k} valued martingale.

$$
d z=e d x=e[\sigma d \beta+b d t]=e \sigma d \beta+e b d t
$$

One verifies such things by checking for simple functions and then passing to the limit. The martingale $z(t)$ would have the property

$$
x_{i}(t) x_{i}^{\prime}(t)-\int_{0}^{t}\left[\sigma(s, \omega) \sigma^{*}(s, \omega)\right]_{i, i^{\prime}} d s
$$

are martingales. In other words

$$
d x \times d x=\sigma \sigma^{*} d t=a(s, \omega) d t
$$

and

$$
d z \times d z=e a e^{*} d t=(e \sigma)\left(e \sigma^{*}\right) d t
$$

Example. Consider the geometric Brownian Motion defined as the solution of

$$
d x(t)=\sigma x(t) d \beta(t)+\mu x(t) d t
$$

One could rewrite this as

$$
\frac{d x(t)}{x(t)}=\sigma d \beta(t)+\mu d t
$$

and expect

$$
\log x(t)=\log x(0)+\sigma \beta(t)+\mu t
$$

But this would be incorrect because

$$
d \log x(t)=\frac{d x(t)}{x(t)}-\frac{1}{2} \frac{d t}{[x(t)]^{2}}[d x(t)]^{2}=\frac{d x(t)}{x(t)}-\frac{\sigma^{2}}{2} d t=\sigma d \beta(t)+\left(\mu-\frac{\sigma^{2}}{2}\right) d t
$$

In other words

$$
x(t)=\exp \left[\sigma \beta(t)+\left(\mu-\frac{\sigma^{2}}{2}\right) t\right]
$$

Girsanov's formula. Let $x(t)$ be a Brownian motion measure on some $\left(\Omega, \mathcal{F}_{t}, P\right)$. If $b(x)$ is a bounded function then

$$
R(t, \omega)=\exp \left[\int_{0}^{t} b(x(s)) d x(s)-\frac{1}{2} \int_{0}^{t} b^{2}(x(s)) d s\right]
$$

is a Martingale and can be used to define a new measure Q that satisfies

$$
\left.\frac{d Q}{d P}\right|_{\mathcal{F}_{t}}=R(t, \omega)
$$

$x(t)$ will not be Brownian motion with respect to Q. But

$$
x(t)-\int_{0}^{t} b(x(s)) d s=y(t)
$$

will be a Brownian motion with respect to Q.
This is not hard to see. With respect to P

$$
\exp \left[\left[\int_{0}^{t}(\theta+b(x(s))) d x(s)-\frac{1}{2} \int_{0}^{t}(\theta+b(x(s)))^{2} d s\right]\right.
$$

are martingales. In other words

$$
\exp \left[\theta\left[x(t)-x(0)-\int_{0}^{t} b(x(s)) d s\right]-\frac{\theta^{2} t}{2}\right] R(t, \omega)
$$

are martingles. This means

$$
\exp \left[\theta\left[x(t)-x(0)-\int_{0}^{t} b(x(s)) d s\right]-\frac{\theta^{2} t}{2}\right]
$$

are martingales with respect to Q. So $y(t)$ is Brownian motion under Q. This argument shows that if we have a solution of

$$
y(t)=x+\int_{0}^{t} b(y(s)) d s+x(t)
$$

where $x(t)$ is Brownian motion then the distribution of $y(t)$ is uniquely determined as Q with Radon-Nikodym derivative $R(t, \omega)$ with respect to Brownian motion.
Take $d=1$. Given $a(t, x)$ and $b(t, x)$ we want to define a diffusion process with the property that (1) it has continuous paths, (2) given the history up to time t, the conditional distribution of the future increment $x(t+h)-x(t)$ has mean $h b(t, x(t))$ and variance $a(t, x(t))$. How do we make this precise? We look for a process P on $\left(C[0, T], \mathcal{F}_{t}\right)$ such that

1. $P[x(0) \in A]=\mu(A)$ is given.
2. $y(t)=x(t)-x(0)-\int_{0}^{t} b(s, x(s)) d s$ is a martingale with respect to $\left(C[0, T], \mathcal{F}_{t}, P\right)$
3. $y^{2}(t)-\int_{0}^{t} a(s, x(s)) d s$ is a martingale with respect to $\left(C[0, T], \mathcal{F}_{t}, P\right)$

Does this determine P uniquely? If so what other properties tie P to a, b, μ ?

