
9. Diffusion proceses.

A diffusion process is a Markov process with continuous paths with values in some Rd.
Given the past history up to time s the conditional distribution at a future time t is given
by the transition probability p(s, x, t, dy). The {p(s, x, t, dy)} can not be arbitrary. They
have to be self consistent, i.e.satisfy the Chapman-Kolmogorov equations

∫
p(s, x, t, dy)p(t, y, u, A) = p(s, x, u, A)

for s < t < u. Given such a p and an initial distribution α x at time s, one can construct
a Markov process for times t ≥ s with

P [x(t0) ∈ A0, x(t1) ∈ A1, . . . , x(tn) ∈ An]

=

∫
A0

∫
A1

· · ·
∫

An

α(dx)p(s, x, t1, dy1) · · ·p(tn−1, yn−1, tn, dyn)

for s = t0 < t1 < · · · < tn. One needs some regularity conditions to make sure the paths
can be chosen to be continuous.

∫
‖y − x‖kp(s, x, t, dy) ≤ C|t − s|1+δ

for some k > 1 and some δ > 0 is enough (Kolmogorov’s Theorem).

We would like to identify them through their infinitesimal means b(t, x) = {bj(t, x)} and
infinitesimal covariances a(t, x) = {ai,j(t, x)}. Roughly speaking we want

E[xj(t + h) − xj(t)|x(t) = x] = hbj(t, x) + o(h)

and
E[(xi(t + h) − xi(t))(xj(t + h) − xj(t))|x(t) = x] = hai,j(t, x) + o(h)

with
P [x(s) ∈ A] = α(A)

We saw that one way was to construct a solution of

dx(t) = σ(t, x(t))dβ(t) + b(t, x(t))dt; x(s) = x

with σ chosen to satisfy σ(t, x)σ(t, x)∗ = a(t, x). We saw that under a Lipschitz condition
on σ the solution, exisits, is unique and is a Markov process with continuous paths. It is
the diffusion corresponding to [a(t, x), b(t, x)].

1. What if we had two different square roots, both having unique solutions. Are the two
solutions ” same”?
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2. What if I have two square roots one of them has a unique solution and the other does
not,

3. When do I have a Lipschitz square root for a?

If either a is Lipschitz and uniformly elliptic, i.e.

c
∑

j

ξ2
j ≤

∑
ai,j(t, x)ξiξj ≤ C

∑
j

ξ2
j

for some 0 < c ≤ C < ∞ and all ξ ∈ Rd or if {ai,j} are twice continuously differentiable
with a bound on the second derivatives, the positive semidefinite symmetric square root is
Lipschitz.

The basic idea is the matrix version of (
√

f)′ = f ′

2
√

f
and |f ′| ≤

√
2C

√
f for nonnegative

functions f . Here C is a bound on the second derivative. This follows from

0 ≤ f(x + h) = f(x) + hf ′(x) +
h2

2
f ′′(ξ) ≤ f(x) + hf ′(x) +

C

2
h2

for all h. This implies
2Cf(x) ≥ |f ′(x)|2

Suppose σ1 and σ2 are two square roots. σ1σ
∗
1 = σ2σ

∗
2 = a. Then assuming non-degeneracy,

[σ−1

2 σ1][σ
−1

2 σ1]
∗ = I. In other words σ1 = σ2J where J(t, x) is orthogonal.

dx(t) = b(t, x(t))dt + σ1(t, x(t))dβ(t)

= b(t, x(t))dt + σ2(t, x(t))J(t, x(t))dβ(t)

= b(t, x(t))dt + σ2(t, x(t))dβ′(t)

with β′ being a Brownian motion. Using a different square root is the same as using the
old square root with a different Brownian motion.

Suppose x(t, ω) is a stochastic integral

x(t) =

∫ t

0

σ(s, ω) · dβ(s) +

∫ t

0

b(s, ω)ds

with β(t, ω) being an n-dimensional Brownian motion with respect to (Ω,Ft, P ) and σ and
b are bounded progressively measurable functions. b : [0, T ]×Ω → Rd and σ : [0, T ]×Ω →
M(d, n) the space of d × n matrices. In other words for 1 ≤ i ≤ d

xi(t) =
n∑

j=1

∫ t

0

σi,j(s, ω)dβj(s) +

∫ t

0

bi(s, ω)ds

Then one can define stochastic integrals with respect to x(t). We write

x(t) = y(t) + A(t)
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where {yi(t)} are martingales and Ai(t) =
∫ t

0
bi(s, ω)ds are of bounded variation. The

integrals

z(s) =

∫ t

0

e(s, ω)dy(s)

are well defined and are again martingales. e(s, ω) can be M(k, d) valued and z(t, ω) would
be a Rk valued martingale.

dz = edx = e[σdβ + bdt] = eσdβ + ebdt

One verifies such things by checking for simple functions and then passing to the limit.
The martingale z(t) would have the property

xi(t)x
′

i(t) −
∫ t

0

[σ(s, ω)σ∗(s, ω)]i,i′ds

are martingales. In other words

dx × dx = σσ∗dt = a(s, ω)dt

and
dz × dz = eae∗dt = (eσ)(eσ∗)dt

Example. Consider the geometric Brownian Motion defined as the solution of

dx(t) = σx(t)dβ(t) + µx(t)dt

One could rewrite this as
dx(t)

x(t)
= σdβ(t) + µdt

and expect
log x(t) = log x(0) + σβ(t) + µt

But this would be incorrect because

d log x(t) =
dx(t)

x(t)
− 1

2

dt

[x(t)]2
[dx(t)]2 =

dx(t)

x(t)
− σ2

2
dt = σdβ(t) + (µ − σ2

2
)dt

In other words

x(t) = exp[σβ(t) + (µ − σ2

2
)t]

Girsanov’s formula. Let x(t) be a Brownian motion measure on some (Ω,Ft, P ). If b(x)
is a bounded function then

R(t, ω) = exp[

∫ t

0

b(x(s))dx(s)− 1

2

∫ t

0

b2(x(s))ds]
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is a Martingale and can be used to define a new measure Q that satisfies

dQ

dP
|Ft

= R(t, ω)

x(t) will not be Brownian motion with respect to Q. But

x(t) −
∫ t

0

b(x(s))ds = y(t)

will be a Brownian motion with respect to Q.

This is not hard to see. With respect to P

exp[[

∫ t

0

(θ + b(x(s)))dx(s)− 1

2

∫ t

0

(θ + b(x(s)))2ds]

are martingales. In other words

exp[θ[x(t) − x(0) −
∫ t

0

b(x(s))ds]− θ2t

2
]R(t, ω)

are martingles. This means

exp[θ[x(t) − x(0) −
∫ t

0

b(x(s))ds]− θ2t

2
]

are martingales with respect to Q. So y(t) is Brownian motion under Q. This argument
shows that if we have a solution of

y(t) = x +

∫ t

0

b(y(s))ds + x(t)

where x(t) is Brownian motion then the distribution of y(t) is uniquely determined as Q

with Radon-Nikodym derivative R(t, ω) with respect to Brownian motion.

Take d = 1. Given a(t, x) and b(t, x) we want to define a diffusion process with the
property that (1) it has continuous paths, (2) given the history up to time t, the conditional
distribution of the future increment x(t + h) − x(t) has mean hb(t, x(t)) and variance
a(t, x(t)). How do we make this precise? We look for a process P on (C[0, T ],Ft) such
that

1. P [x(0) ∈ A] = µ(A) is given.

2. y(t) = x(t) − x(0) −
∫ t

0
b(s, x(s))ds is a martingale with respect to (C[0, T ],Ft, P )

3. y2(t) −
∫ t

0
a(s, x(s))ds is a martingale with respect to (C[0, T ],Ft, P )

Does this determine P uniquely? If so what other properties tie P to a, b, µ ?
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