Assignment 2.

1. For $p>\frac{1}{2}$ consider the Markov Chain on $Z^{+}=\{0,1, \ldots, n, \cdots\}$ defined by the transition probabilities

$$
\begin{aligned}
& \pi(x, x+1)=p \\
& \pi(x, x-1)=1-p
\end{aligned}
$$

for $x \geq 1$ and $\pi(0,1)=1$. The remaining $\pi(\cdot, \cdot)$ are 0 . Show that the chain $\xi_{n} \rightarrow \infty$ as $n \rightarrow \infty$. What is the probability that if it starts from $x>0$ it never visits 0 ?
2. For the same Markov Chain if $p<\frac{1}{2}$, show that the process visits 0 with probability 1 and calculate

$$
m(x)=E\left[\tau \mid \xi_{0}=x\right]
$$

where $\tau=\left\{\inf n: \xi_{n}=0\right\}$ is the time of the first visit to 0 .

