Assignment 1.

1. There are two coins. Coin I and coin II. Coin I has probability $\frac{3}{4}$ for coming up head and $\frac{1}{4}$ for tail. Coin II on the other hand will come up head with probability $\frac{1}{4}$ and tail with probability $\frac{3}{4}$. We have a sequence of tosses. If at a given toss it comes up heads the coin is retained for the next toss. If it comes up tails the coin is switched. S_{n} is the number of heads in the first n tosses. Assume that Coin I is used for the first toss. Let $X_{i}=1$ if the i-th toss is head and 0 if it is a tail. Then $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Find functions $f_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ such that $S_{n+1}-\sum_{i=1}^{n} f_{i}\left(X_{1}, X_{2}, \ldots, X_{i}\right)$ is a Martingale with respect to the σ-fields $\sigma\left(X_{1}, \ldots, X_{n}\right)$.
2. Do problem 6 from
http://www.math.nyu.edu/faculty/varadhan/stochastic.fall08/4.pdf
with the justification asked for in problem 7.
