
Answers.

1.1. Clearly

fn(X1, X2, . . . , Xn) =

{

3
4

if (n + 1)-th toss uses coin 1
1
4 if (n + 1)-th toss uses coin 2

For the n + 1-th coin to be coin 1, even number changes are needed. n − Sn should be
even. Therefore

fn(X1, X2, . . . , Xn) =

{

3
4 if n − Sn is even
1
4 if n − Sn is odd

1.2.

E[S2
n+1 − S2

n|Fn] = E[x2
n+p1 + 2Xn+1Sn|Fn] = 1

Hence S2
n − n is a martingale. Let τ be the stopping time. Then for any k

E[S2
τ∧k − τ ∧ k] = x2

or

E[S2
τ∧k] = E[τ ∧ k] + x2

Sn for n ≤ τ is bounded by N . Hence we can let k → ∞ in the LHS, and by the monotone
convergence theorem it is OK to let k → ∞ in the RHS. Therefore

E[S2
τ ] = N2P [Sτ = N ] + 02P [Sτ = 0] = N2 x

N
= Nx = E[τ ] + x2

or

E[τ ] = Nx − x2 = x(N − x)

2.1 Let P (x) be the probability that ξn → ∞ given that ξ0 = x. Then

P (x) = pP (x + 1) + qP (x − 1) for x ≥ 1; P (0) = P (1)

This yields

(P (x + 1) − P (x))p = q(P (x) − P (x − 1))

Since P (1) − P (0) = 0 it follows that P (x) ≡ c. If we take

u(x) = Aρx

then this will solve
u(x) = pu(x + 1) + qu(x − 1)

if
ρ = pρ2 + q
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or

ρ =
1 +

√
1 − 4pq

2p
=

1 ± (p − q)

2p
= {1,

q

p
}

If we look at the entire set of integers and define π( , ) as just a random walk then u(ξn)
will be a martingale. If τ is the time of hitting 0, there is no difference between the two.
Hence

u(x) =

(

q

p

)x

is the probability of hitting 0. Since a martingale that is bounded must have a limit, the
only other possibility is going to ∞.

1 −
(

q

p

)x

= P [ξn → ∞, ξn > 0 ∀ n ≥ 0|ξ0 = x] → 1

as x → ∞. Therefore c = 1 and P [τ < ∞|ξ0 = x] = ( q
p
)x.

2.2. If q > p, then ξn → −∞ and so P [τ < ∞|ξ0 = x] = 1. Note that until it hits 0 it is
just a random walk. To calculate E[τ ] we note that

ξn − n(p − q)

is a martingale. Yields
E[ξτ − τ(p − q)] = x

But ξτ = 0. Therefore

E[τ ] =
x

q − p

Needs a little justification. Stop at N as well as 0. That is define

τN = inf[t : x(t) = 0 or N ]

x = E[ξτN
− τN (p − q)] = 0p(x) + (1 − pN (x))N − (p − q)Ex[τN ]

Simplifies to

Ex[τN ] =
x − N(1 − pN (x))

(q − p)

Since pN (x) = (p
q
)N−x, NpN (x) → 0. This completes the proof.

3.2. Let τ take values {sj}. Let A ∈ Fτ . Need to show

E[f(x(t1 + τ) − x(τ),x(t2 + τ) − x(τ), . . . , x(tn + τ) − x(τ))1A(ω)]

= P (A)E[f(x(t1), x(t2), . . . , x(tn))]

where P is the Brownian motion probability and E is expectation with respect to P .
Let Ej = {ω : τ = sj}. Then Ej ∈ Fsj

. From the independence of increments for
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Brownian motion, the collection {x(sj + ti) − x(sj)} is independent of Ftj
and has the

same distribution as {x(tj)} under P . Moreover A ∈ Fτ means A∩{τ = tj} ∈ Ftj
. Hence

E[f(x(t1 + τ) − x(τ), x(t2 + τ) − x(τ), . . . , x(tn + τ) − x(τ))1A(ω)]

=
∑

j

E[f(x(t1 + τ) − x(τ), x(t2 + τ) − x(τ), . . . , x(tn + τ) − x(τ))1A∩Ej
(ω)]

=
∑

j

E[f(x(t1 + tj) − x(tj), x(t2 + tj) − x(tj), . . . , x(tn + tj) − x(tj))1A∩Ej
(ω)]

=
∑

j

P (A ∩ Ej)E[f(x(t1), x(t2), . . . , x(tn))]

= P (A)E[f(x(t1), x(t2), . . . , x(tn))]

3.2. First note that [nτ ]+1
n

= j
n

if [nτ ] = j − 1 or j − 1 ≤ nτ < j or j−1
n

≤ τ < j
n
. Hence

the setω : [nτ(ω)]+1
n

= j
n

is in F j

n

and τn is a stopping time. Because τn ≥ τ , Fτn
⊃ Fτ . If

A ∈ Fτ , then A ∈ Fτn
and

E[f(x(t1 + τn) − x(τn), x(t2 + τn) − x(τn), . . . , x(tk + τn) − x(τn))1A(ω)]

= P (A)E[f(x(t1), x(t2), . . . , x(tk))]

Assuming f to be continuous, we can let n → ∞. τn ↓ τ and obtain

E[f(x(t1 + τ) − x(τ), x(t2 + τ) − x(τ), . . . , x(tk + τ) − x(τ))1A(ω)]

= P (A)E[f(x(t1), x(t2), . . . , x(tk))]

4.1 By Itô’s formula, until time τ ,

du(t, x) = [ut(t, x(t)) +
1

2
uxx(t, x(t))]dt + ux(t, x(t))dx(t)

where x(t) is Brownian Motion starting from any x with |x| < 1 at time s. In particular

u(s, x) = Ex[u(τ ∧ t), x(τ ∧ t))]

On the set τ ≤ t, u(τ, x(τ)) = u(t,±1) = 0. Hence if u is bounded by C,

u(s, x) ≤ CP [τ > t]

And, by the reflection principle

P [τ > t] ≤ Ps,x[ sup
s≤σ≤t

x(σ) ≤ 1]

≤ 1 − 2Ps,x[x(t) ≥ 1]

= 1 − 2
1

√

2π(t − s)

∫ ∞

1

exp[− y2

2(t − s)
]dy

= 2
1

√

2π(t − s)

∫ 1

0

exp[− y2

2(t − s)
]dy

≤]
2

√

2π(t − s)

→ 0

3



as t → ∞. As for the second part, one can construct a solution of the form

f(x)eλt

provided

λf +
1

2
fxx = 0.

f(x) = cos π
2
x and λ = π2

8
will do it.

4.2. We show that

u(s, x) = P [τ < ∞|x(s) = 0] → 0

as s → ∞. By symmetry

Ps,0[τ < ∞] ≤ 2Ps,0[ sup
t≥s

[x(t) − t] ≥ 0]

If x(t) is Brownian motion starting from 0 at time s, the process

ex(t)− 1

2
(t−s)

is a martingale. By Doob’s inequality

Ps,0[ sup
t≥s

ex(t)− 1

2
(t−s) ≥ ℓ] ≤ e−ℓ

Take ℓ = e
s
2 . Then, and

Ps,0[ sup
t≥s

[x(t) − t] ≥ 0] = Ps,0[ sup
t≥s

ex(t)−t ≥ 1] ≤ Ps,0[ sup
t≥s

ex(t)− 1

2
(t−s) ≥ ℓ] ≤ e−

s
2

which is sufficient.

5.1

I(f) = f(T )x(T ) − x(0)f(0)−
∫ T

0

x(s)f ′(s)ds = f(T )x(T )−
∫ T

0

x(s)f ′(s)ds

Clearly I(f) is Gausian, has mean 0 and

E
[

[I(f)]2
]

= T [f(T )]2 +

∫ T

0

∫ T

0

f ′(t)f ′(s) min(s, t)dsdt− 2

∫ T

0

f(T )f ′(s) min(T, s)ds

This reduces to
∫ T

0

|f(t)|2dt
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if we integrate by parts. Now we approximate f ∈ L2[0, T ] by smooth fn and

lim
m,n→∞

E
[

[I(fn) − I(fm)]2
]

= lim
m,n→∞

E
[

[I(fn) − I(fm)]2
]

= lim
m,n→∞

∫ T

0

|fn(t) − fm(t)|2dt = 0

I(fn) then has a limit in L2(P ) and the limit I(f) is clearly Gaussian with mean 0 and

variance
∫ T

0
|f(t)|2dt.

5.2 If Z is a Gaussian random variable with mean 0 and variance σ2, we have

E[|Z|] = cσ, E[|Z|2] = σ2, Var (|Z|) = (1 − c2)σ2

Therefoer

E[Vn] = c2n · 2−n
2 = c2

n
2 Var (Vn) = (1 − c2)2n2−n = (1 − c2)

By Tchebechev’s inequality

P [Vn ≤ c

2
2

n
2 ] ≤ P [|Vn − E(Vn)| ≥ c

2
2

n
2 ] ≤ 4(1 − c2)

c2
2−n

Borel-Cantelli Lemma shows Vn → ∞ with probability 1.

c =
1√
2π

∫ ∞

−∞

|z|e− z2

2 dz = 2
1√
2π

∫ ∞

0

z e−
z2

2 dz = 2
1√
2π

=

√

2

π
< 1
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