Answers.

1.1. Clearly

$$
f_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)= \begin{cases}\frac{3}{4} & \text { if }(n+1) \text {-th toss uses coin } 1 \\ \frac{1}{4} & \text { if }(n+1) \text {-th toss uses coin } 2\end{cases}
$$

For the $n+1$-th coin to be coin 1 , even number changes are needed. $n-S_{n}$ should be even. Therefore

$$
f_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)= \begin{cases}\frac{3}{4} & \text { if } n-S_{n} \text { is even } \\ \frac{1}{4} & \text { if } n-S_{n} \text { is odd }\end{cases}
$$

1.2.

$$
E\left[S_{n+1}^{2}-S_{n}^{2} \mid \mathcal{F}_{n}\right]=E\left[x_{n+p 1}^{2}+2 X_{n+1} S_{n} \mid \mathcal{F}_{n}\right]=1
$$

Hence $S_{n}^{2}-n$ is a martingale. Let τ be the stopping time. Then for any k

$$
E\left[S_{\tau \wedge k}^{2}-\tau \wedge k\right]=x^{2}
$$

or

$$
E\left[S_{\tau \wedge k}^{2}\right]=E[\tau \wedge k]+x^{2}
$$

S_{n} for $n \leq \tau$ is bounded by N. Hence we can let $k \rightarrow \infty$ in the LHS, and by the monotone convergence theorem it is OK to let $k \rightarrow \infty$ in the RHS. Therefore

$$
E\left[S_{\tau}^{2}\right]=N^{2} P\left[S_{\tau}=N\right]+0^{2} P\left[S_{\tau}=0\right]=N^{2} \frac{x}{N}=N x=E[\tau]+x^{2}
$$

or

$$
E[\tau]=N x-x^{2}=x(N-x)
$$

2.1 Let $P(x)$ be the probability that $\xi_{n} \rightarrow \infty$ given that $\xi_{0}=x$. Then

$$
P(x)=p P(x+1)+q P(x-1) \quad \text { for } \quad x \geq 1 ; \quad P(0)=P(1)
$$

This yields

$$
(P(x+1)-P(x)) p=q(P(x)-P(x-1))
$$

Since $P(1)-P(0)=0$ it follows that $P(x) \equiv c$. If we take

$$
u(x)=A \rho^{x}
$$

then this will solve

$$
u(x)=p u(x+1)+q u(x-1)
$$

if

$$
\rho=p \rho^{2}+q
$$

or

$$
\rho=\frac{1+\sqrt{1-4 p q}}{2 p}=\frac{1 \pm(p-q)}{2 p}=\left\{1, \frac{q}{p}\right\}
$$

If we look at the entire set of integers and define $\pi($,$) as just a random walk then u\left(\xi_{n}\right)$ will be a martingale. If τ is the time of hitting 0 , there is no difference between the two. Hence

$$
u(x)=\left(\frac{q}{p}\right)^{x}
$$

is the probability of hitting 0 . Since a martingale that is bounded must have a limit, the only other possibility is going to ∞.

$$
1-\left(\frac{q}{p}\right)^{x}=P\left[\xi_{n} \rightarrow \infty, \xi_{n}>0 \quad \forall n \geq 0 \mid \xi_{0}=x\right] \rightarrow 1
$$

as $x \rightarrow \infty$. Therefore $c=1$ and $P\left[\tau<\infty \mid \xi_{0}=x\right]=\left(\frac{q}{p}\right)^{x}$.
2.2. If $q>p$, then $\xi_{n} \rightarrow-\infty$ and so $P\left[\tau<\infty \mid \xi_{0}=x\right]=1$. Note that until it hits 0 it is just a random walk. To calculate $E[\tau]$ we note that

$$
\xi_{n}-n(p-q)
$$

is a martingale. Yields

$$
E\left[\xi_{\tau}-\tau(p-q)\right]=x
$$

But $\xi_{\tau}=0$. Therefore

$$
E[\tau]=\frac{x}{q-p}
$$

Needs a little justification. Stop at N as well as 0 . That is define

$$
\begin{gathered}
\tau_{N}=\inf [t: x(t)=0 \text { or } N] \\
x=E\left[\xi_{\tau_{N}}-\tau_{N}(p-q)\right]=0 p(x)+\left(1-p_{N}(x)\right) N-(p-q) E_{x}\left[\tau_{N}\right]
\end{gathered}
$$

Simplifies to

$$
E_{x}\left[\tau_{N}\right]=\frac{x-N\left(1-p_{N}(x)\right)}{(q-p)}
$$

Since $p_{N}(x)=\left(\frac{p}{q}\right)^{N-x}, N p_{N}(x) \rightarrow 0$. This completes the proof.
3.2. Let τ take values $\left\{s_{j}\right\}$. Let $A \in \mathcal{F}_{\tau}$. Need to show

$$
\begin{gathered}
E\left[f\left(x\left(t_{1}+\tau\right)-x(\tau), x\left(t_{2}+\tau\right)-x(\tau), \ldots, x\left(t_{n}+\tau\right)-x(\tau)\right) \mathbf{1}_{A}(\omega)\right] \\
=P(A) E\left[f\left(x\left(t_{1}\right), x\left(t_{2}\right), \ldots, x\left(t_{n}\right)\right)\right]
\end{gathered}
$$

where P is the Brownian motion probability and E is expectation with respect to P. Let $E_{j}=\left\{\omega: \tau=s_{j}\right\}$. Then $E_{j} \in \mathcal{F}_{s_{j}}$. From the independence of increments for

Brownian motion, the collection $\left\{x\left(s_{j}+t_{i}\right)-x\left(s_{j}\right)\right\}$ is independent of $\mathcal{F}_{t_{j}}$ and has the same distribution as $\left\{x\left(t_{j}\right)\right\}$ under P. Moreover $A \in \mathcal{F}_{\tau}$ means $A \cap\left\{\tau=t_{j}\right\} \in \mathcal{F}_{t_{j}}$. Hence

$$
\begin{aligned}
E & \left.f\left(x\left(t_{1}+\tau\right)-x(\tau), x\left(t_{2}+\tau\right)-x(\tau), \ldots, x\left(t_{n}+\tau\right)-x(\tau)\right) \mathbf{1}_{A}(\omega)\right] \\
& =\sum_{j} E\left[f\left(x\left(t_{1}+\tau\right)-x(\tau), x\left(t_{2}+\tau\right)-x(\tau), \ldots, x\left(t_{n}+\tau\right)-x(\tau)\right) \mathbf{1}_{A \cap E_{j}}(\omega)\right] \\
& =\sum_{j} E\left[f\left(x\left(t_{1}+t_{j}\right)-x\left(t_{j}\right), x\left(t_{2}+t_{j}\right)-x\left(t_{j}\right), \ldots, x\left(t_{n}+t_{j}\right)-x\left(t_{j}\right)\right) \mathbf{1}_{A \cap E_{j}}(\omega)\right] \\
& =\sum_{j} P\left(A \cap E_{j}\right) E\left[f\left(x\left(t_{1}\right), x\left(t_{2}\right), \ldots, x\left(t_{n}\right)\right)\right] \\
& =P(A) E\left[f\left(x\left(t_{1}\right), x\left(t_{2}\right), \ldots, x\left(t_{n}\right)\right)\right]
\end{aligned}
$$

3.2. First note that $\frac{[n \tau]+1}{n}=\frac{j}{n}$ if $[n \tau]=j-1$ or $j-1 \leq n \tau<j$ or $\frac{j-1}{n} \leq \tau<\frac{j}{n}$. Hence the set $\omega: \frac{[n \tau(\omega)]+1}{n}=\frac{j}{n}$ is in $\mathcal{F}_{\frac{j}{n}}$ and τ_{n} is a stopping time. Because $\tau_{n} \geq \tau, \mathcal{F}_{\tau_{n}} \supset \mathcal{F}_{\tau}$. If $A \in \mathcal{F}_{\tau}$, then $A \in \mathcal{F}_{\tau_{n}}$ and

$$
\begin{gathered}
E\left[f \left(x\left(t_{1}+\tau_{n}\right)-x\left(\tau_{n}\right),\right.\right. \\
\left.\left.=P\left(t_{2}+\tau_{n}\right)-x\left(\tau_{n}\right), \ldots, x\left(t_{k}+\tau_{n}\right)-x\left(\tau_{n}\right)\right) \mathbf{1}_{A}(\omega)\right] \\
=P(A) E\left[f\left(x\left(t_{1}\right), x\left(t_{2}\right), \ldots, x\left(t_{k}\right)\right)\right]
\end{gathered}
$$

Assuming f to be continuous, we can let $n \rightarrow \infty . \tau_{n} \downarrow \tau$ and obtain

$$
\begin{gathered}
E\left[f \left(x\left(t_{1}+\tau\right)-x(\tau),\right.\right. \\
\left.\left.=P\left(t_{2}+\tau\right)-x(\tau), \ldots, x\left(t_{k}+\tau\right)-x(\tau)\right) \mathbf{1}_{A}(\omega)\right] \\
=P(A) E\left[f\left(x\left(t_{1}\right), x\left(t_{2}\right), \ldots, x\left(t_{k}\right)\right)\right]
\end{gathered}
$$

4.1 By Itô's formula, until time τ,

$$
d u(t, x)=\left[u_{t}(t, x(t))+\frac{1}{2} u_{x x}(t, x(t))\right] d t+u_{x}(t, x(t)) d x(t)
$$

where $x(t)$ is Brownian Motion starting from any x with $|x|<1$ at time s. In particular

$$
\left.u(s, x)=E_{x}[u(\tau \wedge t), x(\tau \wedge t))\right]
$$

On the set $\tau \leq t, u(\tau, x(\tau))=u(t, \pm 1)=0$. Hence if u is bounded by C,

$$
u(s, x) \leq C P[\tau>t]
$$

And, by the reflection principle

$$
\begin{aligned}
P[\tau>t] & \leq P_{s, x}\left[\sup _{s \leq \sigma \leq t} x(\sigma) \leq 1\right] \\
& \leq 1-2 P_{s, x}[x(t) \geq 1] \\
& =1-2 \frac{1}{\sqrt{2 \pi(t-s)}} \int_{1}^{\infty} \exp \left[-\frac{y^{2}}{2(t-s)}\right] d y \\
& =2 \frac{1}{\sqrt{2 \pi(t-s)}} \int_{0}^{1} \exp \left[-\frac{y^{2}}{2(t-s)}\right] d y \\
& \leq] \frac{2}{\sqrt{2 \pi(t-s)}} \\
& \rightarrow 0
\end{aligned}
$$

as $t \rightarrow \infty$. As for the second part, one can construct a solution of the form

$$
f(x) e^{\lambda t}
$$

provided

$$
\lambda f+\frac{1}{2} f_{x x}=0
$$

$f(x)=\cos \frac{\pi}{2} x$ and $\lambda=\frac{\pi^{2}}{8}$ will do it.
4.2. We show that

$$
u(s, x)=P[\tau<\infty \mid x(s)=0] \rightarrow 0
$$

as $s \rightarrow \infty$. By symmetry

$$
P_{s, 0}[\tau<\infty] \leq 2 P_{s, 0}\left[\sup _{t \geq s}[x(t)-t] \geq 0\right]
$$

If $x(t)$ is Brownian motion starting from 0 at time s, the process

$$
e^{x(t)-\frac{1}{2}(t-s)}
$$

is a martingale. By Doob's inequality

$$
P_{s, 0}\left[\sup _{t \geq s} e^{x(t)-\frac{1}{2}(t-s)} \geq \ell\right] \leq e^{-\ell}
$$

Take $\ell=e^{\frac{s}{2}}$. Then, and

$$
P_{s, 0}\left[\sup _{t \geq s}[x(t)-t] \geq 0\right]=P_{s, 0}\left[\sup _{t \geq s} e^{x(t)-t} \geq 1\right] \leq P_{s, 0}\left[\sup _{t \geq s} e^{x(t)-\frac{1}{2}(t-s)} \geq \ell\right] \leq e^{-\frac{s}{2}}
$$

which is sufficient.

5.1

$$
I(f)=f(T) x(T)-x(0) f(0)-\int_{0}^{T} x(s) f^{\prime}(s) d s=f(T) x(T)-\int_{0}^{T} x(s) f^{\prime}(s) d s
$$

Clearly $I(f)$ is Gausian, has mean 0 and

$$
E\left[[I(f)]^{2}\right]=T[f(T)]^{2}+\int_{0}^{T} \int_{0}^{T} f^{\prime}(t) f^{\prime}(s) \min (s, t) d s d t-2 \int_{0}^{T} f(T) f^{\prime}(s) \min (T, s) d s
$$

This reduces to

$$
\int_{0}^{T}|f(t)|^{2} d t
$$

if we integrate by parts. Now we approximate $f \in L_{2}[0, T]$ by smooth f_{n} and

$$
\begin{aligned}
\lim _{m, n \rightarrow \infty} E\left[\left[I\left(f_{n}\right)-I\left(f_{m}\right)\right]^{2}\right] & =\lim _{m, n \rightarrow \infty} E\left[\left[I\left(f_{n}\right)-I\left(f_{m}\right)\right]^{2}\right] \\
& =\lim _{m, n \rightarrow \infty} \int_{0}^{T}\left|f_{n}(t)-f_{m}(t)\right|^{2} d t=0
\end{aligned}
$$

$I\left(f_{n}\right)$ then has a limit in $L_{2}(P)$ and the limit $I(f)$ is clearly Gaussian with mean 0 and variance $\int_{0}^{T}|f(t)|^{2} d t$.
5.2 If Z is a Gaussian random variable with mean 0 and variance σ^{2}, we have

$$
E[|Z|]=c \sigma, \quad E\left[|Z|^{2}\right]=\sigma^{2}, \quad \operatorname{Var}(|Z|)=\left(1-c^{2}\right) \sigma^{2}
$$

Therefoer

$$
E\left[V_{n}\right]=c 2^{n} \cdot 2^{-\frac{n}{2}}=c 2^{\frac{n}{2}} \quad \operatorname{Var}\left(V_{n}\right)=\left(1-c^{2}\right) 2^{n} 2^{-n}=\left(1-c^{2}\right)
$$

By Tchebechev's inequality

$$
P\left[V_{n} \leq \frac{c}{2} 2^{\frac{n}{2}}\right] \leq P\left[\left|V_{n}-E\left(V_{n}\right)\right| \geq \frac{c}{2} 2^{\frac{n}{2}}\right] \leq \frac{4\left(1-c^{2}\right)}{c^{2}} 2^{-n}
$$

Borel-Cantelli Lemma shows $V_{n} \rightarrow \infty$ with probability 1.

$$
c=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}|z| e^{-\frac{z^{2}}{2}} d z=2 \frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} z e^{-\frac{z^{2}}{2}} d z=2 \frac{1}{\sqrt{2 \pi}}=\sqrt{\frac{2}{\pi}}<1
$$

