
6. Brownian Motion.

A stochastic process can be thought of in one of many equivalent ways. We can begin
with an underlying probability space (Ω, Σ , P ) and a real valued stochastic process can
be defined as a collection of random variables {x(t, ω)} indexed by the parametr set T.
This means that for each t ∈ T, x(t , ω) is a measurable map of (Ω , Σ) → (R,B0) where
(R,B0) is the real line with the usual Borel σ-field. The parameter set usually represents
time and could be either the integers representing discrete time or could be [0 , T ], [0, ∞)
or (−∞ ,∞) if we are studying processes in continuous time. For each fixed ω we can view
x(t , ω) as a map of T → R and we would then get a random function of t ∈ T. If we
denote by X the space of functions on T, then a stochastic process becomes a measurable
map from a probability space into X. There is a natural σ-field B on X and measurability
is to understood in terms of this σ-field. This natural σ-field, called the Kolmogorov σ-
field, is defined as the smallest σ-field such that the projections {πt(f) = f(t) ; t ∈ T}
mapping X → R are measurable. The point of this definition is that a random function
x(· , ω) : Ω → X is measurable if and only if the random variables x(t , ω) : Ω → R are
measurable for each t ∈ T.

The mapping x(·, ·) induces a measure on (X ,B) by the usual definition

Q(A) = P
[

ω : x(· , ω) ∈ A
)

for A ∈ B. Since the underlying probability model (Ω , Σ , P ) is irrelevent, it can be replaced
by the canonical model (X, B , Q) with the special choice of x(t, f) = πt(f) = f(t). A
stochastic process then can be defined simply as a probability measure Q on (X ,B).

Another point of view is that the only relevent objects are the joint distributions of
{x(t1 , ω), x(t2 , ω), · · · , x(tk , ω)} for every k and every finite subset F = (t1, t2, · · · , tk) of
T. These can be specified as probability measures µF on Rk. These {µF } cannot be
totally arbitrary. If we allow different permutations of the same set, so that F and F ′ are
permutations of each other then µF and µF ′ should be related by the same permutation.
If F ⊂ F ′, then we can obtain the joint distribution of {x(t , ω) ; t ∈ F} by projecting the
joint distribution of {x(t , ω) ; t ∈ F ′} from Rk′ → Rk where k′ and k are the cardinalities
of F ′ and F respectively. A stochastic process can then be viewed as a family {µF } of
distibutions on various finite dimensional spaces that satisfy the consistency conditions. A
theorem of Kolmogorov says that this not all that different. Any such consistent family
arises from a Q on (X ,B) which is uniquely determine by the family {µF }.

If T is countable this is quite satisfactory. X is the the space of sequences and the
σ-field B is quite adequate to answer all the questions we may want to ask. The set of
bounded sequences, the set of convergent sequences, the set of summable sequences are
all measurable subsets of X and therefore we can answer questions like ‘does the sequence
converge with probability 1 ?’. etc. However if T is uncountable like [0, T ], then the
space of bounded functions, the space of continuous functions etc, are not measurable
sets. They do not belong to B. Basically, in probability theory, the rules involve only a
countable collection of sets at one time and any information that involves the values of an
uncountable number of measurable functions is out of reach. There is an intrinsic reason
for this. In probability theory we can change the values of a single random variable on a
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set of measure 0 and we have not changed anything of consequence. Since we are allowed
to mess up each function on a set of measure 0 we have to assume that each function has
indeed been messed up on a set of measure 0. If we are dealing with a countable number
of functions the ‘mess up ’has occured only on the countable union of these invidual sets of
measure 0, which by the properties of a measure is again a set of measure 0. On the other
hand if we are dealing with an uncountable set of functions, then these sets of measure 0
can possibly gang up on us to produce a set of positive or even full measure. We just can
not be sure.

Of course it would be foolish of us to mess things up unnecessarily. If we can clean
things up and choose a nice version of our random variables we should do so. But we
cannot really do this sensibly unless we decide first what nice means. We however face the
risk of being too greedy and it may not be possible to have a version as nice as we seek.
But then we can always change our mind.

Very often it is natural to try to find a version that has continuous trajectories. This is
equivalent to restricting X to the space of continuous functions on [0, T ] and we are trying
to construct a measure Q on X = C[0 , T ] with the natural σ-field B. This is not always
possible. We want to find some sufficient conditions on the finite dimensional distributions
{µF } that guarantee that a choice of Q exists on (X ,B).

Theorem 1. Assume that for any pair (s, t) ∈ [0 , T ] the bivariate distribution µs,t satisfies

∫ ∫

|x − y|βµs,t(dx , dy) ≤ C|t − s|1+α

for some positive constants β, α and C. Then there is a unique Q on (X ,B) such that it

has {µF } for its finite dimensional distributions.

Proof: Since we can only deal effectively with a countable number of random variables,
we restrict ourselves to valuse at diadic times. Let us for simplicity take T = 1. Denote
by Tn time points t of the form t = j

2n for 0 ≤ j ≤ 2n. The countable union ∪∞
j=0Tj = T0

is a counatble dense subset of T. We will construct a probability measure Q on the space
of sequences corresponding to the values of {x(t) : t ∈ T0}, show that Q is supported
on sequences that produce uniformly continuous functions on T0 and then extend them
automatically to T by continuity and the extension will provide us the natural Q on C[0 , 1].
If we start from the set of values on Tn, the n-th level of diadics, by linear iterpolation we
can construct a version xn(t) that agrees with the original variables at these diadic points.
This way we have a sequence xn(t) such that xn(·) = xn+1(·) on Tn. If we can show that
for some γ > 0 and δ > 0,

(1) Q
[

x(·) : sup
0≤t≤1

|xn(t) − xn+1(t)| ≥ 2−nγ
]

≤ C2−nδ)

then we can conclude that

Q
[

x(·) : lim
n→∞

xn(t) = x∞(t) exists uniformly on [0 , 1]
]

= 1

The limit x∞(·) will be continuous on T and will coincide with x(·) on T0 thereby establish-
ing our result. Proof of (1) depends on a simple observation. The difference |xn(·)−xn+1(·)|
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achieves its maximum at the mid point of one of the diadic intervals determined by Tn

and hence

sup
0≤t≤1

|xn(t) − xn+1(t)| ≤ sup
1≤j≤2n

|xn(
2j − 1

2n+1
) − xn+1(

2j − 1

2n+1
)|

≤ sup
1≤j≤2n

max
{

|x(
2j − 1

2n+1
) − x(

2j

2n+1
)|, |x(

2j − 1

2n+1
) − x(

2j − 2

2n+1
)|

}

and we can estimate the left hand side of (1) by

Q
[

x(·) : sup
0≤t≤1

|xn(t) − xn+1(t)| ≥ 2−nγ
]

≤ Q
[

sup
1≤i≤2n+1

|x(
i

2n+1
) − x(

i − 1

2n+1
)| ≥ 2−nγ

]

≤ 2n+1 sup
1≤i≤2n+1

Q
[

|x(
i

2n+1
) − x(

i − 1

2n+1
)| ≥ 2−nγ

]

≤ 2n+12nβγ sup
1≤i≤2n+1

EQ
[

|x(
i

2n+1
) − x(

i − 1

2n+1
)|β

]

≤ C2n+1 2nβγ 2−(1+α)(n+1)

≤ C2−nδ

provided δ ≤ α − βγ. For given α, β we can pick γ < α
β

and we are done.

An equivalent version of this theorem is the following.

Theorem 2. If x(t , ω) is a stochastic process on (Ω , Σ , P ) satisfying

EP
[

|x(t) − x(s)|β
]

≤ C|t − s|1+α

for some positive constants α, β and C, then if necessary, x(t, ω) can be modified for each

t on a set of measure zero, to obtain an equivalent version that is almost surely continuous.

As an important application we consider Brownian Motion, which is defined as a stochastic
process that has multivariate normal distributions for its finite dimensional distributions.
These normal distributions have mean zero and the variance covariance matrix is specified
by Cov(x(s), x(t)) = min(s, t). An elementary calculation yields

E|x(s)− x(t)|4 = 3|t − s|2

so that Theorem (2) is applicable with β = 4, α = 1 and C = 3.
To see that some restriction is needed, let us consider the Poisson process defined as

a process with independent increments with the distribution of x(t) − x(s) being Poisson
with parameter t − s provided t > s. In this case since

P [x(t) − x(s) ≥ 1] = 1 − exp[−(t − s)]
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we have, for every n ≥ 0,

E|x(t)− x(s)|n ≥ 1 − exp[−|t − s|] ≃ C|t − s|

and the conditions for Theorem (2) are never satisfied. It should not be, because after all
a Poisson process is a counting process and jumps whenever the event that it is counting
occurs and it would indeed be greedy of us to try to put the measure on the space of
continuous functions.

Remark. The fact that there cannot be a measure on the space of continuous functions
whose finite dimensional distributions coincide with those of the Poisson process requires a
proof. There is a whole class of nasty examples of measures {Q} on the space of continuous
functions such that for every t ∈ [0 , 1]

Q
[

ω : x(t , ω) is a rational number
]

= 1

The difference is that the rationals are dense, whereas the integers are not. The proof
has to depend on the fact that a continuous function that is not identically equal to some
fixed integer must spend a positive amount of time at nonintegral points. Try to make a
rigorous proof using Fubini’s theorem.

Brownian Motion as a Markov Process

Let

p(t, x, y) =
1√
2πt

e−
(y−x)2

2t

Then
∫

p(t, x, y)p(s, y, z)dy = p(t + s.x.z)

Moreover, because the Brownian motion x(t) is a process with independent increments,
i.e. x(t) − x(s) is independent of Fs = σ{x(u) : 0 ≤ u ≤ s}

P [x(t) − x(s) ∈ A|Fs] =

∫

A

1
√

2π(t − s)
e
− y2

2(t−s) dy

or

P [x(t) ∈ A|Fs] =

∫

A

1
√

2π(t − s)
e
−

(y−x(s))2

2(t−s) dy

establishing the Markov property.

Strong Markov Property. If {Xn} is a Markov Chain with transition probability π(x, A)
and τ is a stopping time then

P [Xτ+1 ∈ A|Fτ ] = π(Xτ , A)

i.e the Markov property is valid for stopping times as well. The process after a stopping
time τ behaves exactly like a process starting afresh from Xτ . The proof is quite simple.
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Let us show that E[f(Xτ+1|Fτ ] =
∫

f(y)π(Xτ , dy). For A ∈ Fτ , A ∪ {τ = k} ∈ Fk.
Therefore

∫

A

[

∫

f(y)π(Xτ , dy)]dP =
∑

k

∫

A∩{τ=k}

[

∫

f(y)π(Xτ , dy)
]

dP

=
∑

k

∫

A∩{τ=k}

[

∫

f(y)π(Xk, dy)
]

dP

=
∑

k

∫

A∩{τ=k}

f(Xk+1) dP

=

∫

A

f(Xk+1) dP

Exercise: Show that the process {Xτ+k : k ≥ 1} conditioned on Fτ is the same as the
Markov process starting from Xτ .

Exercise. In the case of Brownian motion, if τ is a stopping time that takes only a
countable number of values show that the process x(τ + t) − x(τ) is again a Brownian
motion independent of Fτ .

Exercise. If τ is a stopping time, then τn = [nτ ]+1
n

where [x] is the largest integer not
exceeding x, is again a stopping time and τn ↓ τ as n → ∞.

Exercise. Extend the strong Markov property for Brownian motion to any stopping time
τ with P [τ < ∞] = 1.

Reflection principle. Let a > 0 and

τ = inf{t : x(t) ≥ a}

Then the set x(T ) ∈ A is the disjoint union of two sets {x(T ) ∈ A} ∩ {τ ≤ T} and
{x(T ) ∈ A} ∩ {τ > T}.

∫

A

1√
2πT

e−
y2

2T dy =

∫

A

p1(y)dy +

∫

A

p2(dy)

By the strong Markov property p1(y) is symmetric around y = a and p2(y) is equal to 0
for y ≥ a. This means

p1(y) =
1√
2πT

e−
y2

2T

for y ≥ a and for y ≤ a,

p1(y) =
1√
2πT

e−
(2a−y)2

2T

In particular

P [ sup
0≤t≤T

x(t) ≥ a] = P [τ ≤ T ] =

∫ ∞

−∞

p1(y)dy = 2

∫ ∞

a

1√
2πT

e−
(2a−y)2

2T dy = 2P [x(T ) ≥ a]
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Brownian Motion As a Martingale.

If P is the Wiener measure on (Ω = C[0, T ],B) and Bt is the σ-field generated by x(s) for
0 ≤ s ≤ t, then x(t) is a martingale with respect to (Ω,Bt, P ), i.e for each t > s in [0, T ]

EP {x(t)|Fs} = x(s) a.e. P

and so is x(t)2 − t. In other words

EP {x(t)2 − t |Fs} = x(s)2 − s a.e. P

The proof is rather straight forward. We write x(t) = x(s) + Z where Z = x(t)− x(s) is a
random variable independent of the past history Bs and is distributed as a Gaussian random
variable with mean 0 and variance t− s. Therefore EP {Z|Bs} = 0 and EP {Z2|Bs} = t− s

a.e P . Conversely,

Theorem 3. ( Levy) If P is a measure on (C[0, T ],B) such that P [x(0) = 0] = 1 and the

the functions x(t) and x2(t) − t are martingales with respect to (C[0, T ],Bt, P ) then P is

the Wiener measure.

Proof: The proof is based on the observation that a Gaussian distribution is determined
by two moments. But that the distribution is Gaussian is a consequence of the fact that
the paths are almost surely continuous and not part of our assumptions. The actual proof
is carried out by establishing that for each real number l

Xl(t) = exp
[

lx(t) − l2

2
t
]

is a martingale with respect to (C[0, T ],Bt, P ). Once this is established it is elementary to
compute

(2) EP
[

exp
[

l(x(t) − x(s))
]

|Bs

]

= exp
[ l2

2
(t − s)

]

which shows that we have a Gaussian Process with independent increments with two
matching moments. The proof of (2) is more or less the same as proving the central limit
theorem. In order to prove (2) we assume with out loss of generality that s = 0 and will
show that

EP
[

exp
[

lx(t) − l2

2
t
]]

= 1

To this end let us define successively τ0,ǫ = 0,

τk+1,ǫ = min
[

inf
{

s : s ≥ τk, |x(s)− x(τk,ǫ)| ≥ ǫ
}

, t , τk,ǫ + ǫ
]

Then each τk,ǫ is a stopping time and eventually τk,ǫ = t by continuity of paths. The
continuity of paths also guarantees that |x(τk+1,ǫ) − x(τk,ǫ)| ≤ ǫ. We write

x(t) =
∑

k≥0

[x(τk+1,ǫ) − x(τk,ǫ)]
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and
t =

∑

k≥0

[τk+1,ǫ − τk,ǫ]

To establish (2) we calculate the quantity on the left hand side as

lim
n→∞

EP
[

exp
[

∑

0≤k≤n

[

l[x(τk+1,ǫ) − x(τk,ǫ)] −
l2

2
[τk+1,ǫ − τk,ǫ]

]]]

and show that it equals 1. Let us cosider the σ-field Fk = Bτk,ǫ
and the quantity

qk(ω) = EP
[

exp
[

l[x(τk+1,ǫ) − x(τk,ǫ)] −
l2

2
[τk+1,ǫ − τk,ǫ]

]

∣

∣

∣

∣

Fk

]

Clearly, if we use Taylor expansion and the fact that x(t) as well as x(t)2−t are martingales

|qk(ω) − 1| ≤ CEP
[[

l3|x(τk+1,ǫ) − x(τk,ǫ)|3 + l2|τk+1,ǫ − τk,ǫ|2
]

∣

∣

∣

∣

Fk

]

≤ Cl ǫEP
[[

|x(τk+1,ǫ) − x(τk,ǫ)|2 + |τk+1,ǫ − τk,ǫ|
]
∣

∣Fk

]

= 2Cl ǫEP
[

|τk+1,ǫ − τk,ǫ|
∣

∣Fk

]

In particular for some constant C depending on l

qk(ω) ≤ EP
[

exp
[

C ǫ [τk+1,ǫ − τk,ǫ]
]
∣

∣Fk

]

and by induction for every n

EP
[

exp
[

∑

0≤k≤n

[

l[x(τk+1,ǫ) − x(τk,ǫ)] −
l2

2
[τk+1,ǫ − τk,ǫ]

]]]

≤ exp[C ǫ t ]

Since ǫ > 0 is arbitrary we prove one half of (2). Notice that in any case supω |qk(ω)−1| ≤
Clǫ

2. Hence we have the lower bound

qk(ω) ≥ EP
[

exp
[

− C ǫ [τk+1,ǫ − τk ǫ]
]

∣

∣

∣

∣

Fk

]

which can be used to prove the other half. The upper bound provides the necessary uniform
integrability. This completes the proof of the theorem.

Exercise: Why does the Theorem fail for the process x(t) = N(t) − t where N(t) is the
standard Poisson Process with rate 1?

Remark: One can use the Martingale inequality in order to estimate the probability
P{sup0≤s≤t |x(s)| ≥ ℓ}. For l > 0, by Doob’s inequality

P
[

sup
0≤s≤t

exp
[

lx(s) − l2

2
s
]

≥ A
]

≤ 1

A
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and

P
[

sup
0≤s≤t

x(s) ≥ ℓ
]

≤ P
[

sup
0≤s≤t

[x(s) − ls

2
] ≥ ℓ − lt

2

]

= P
[

sup
0≤s≤t

[lx(s)− l2s

2
] ≥ lℓ − l2t

2

]

≤ exp[−lℓ +
l2t

2
]

Optimizing over l > 0, we obtain

P
[

sup
0≤s≤t

x(s) ≥ ℓ
]

≤ exp[−ℓ2

2t
]

and by symmetry

P
[

sup
0≤s≤t

|x(s)| ≥ ℓ
]

≤ 2 exp[−ℓ2

2t
]

The estimate is not too bad because by reflection principle

P
[

sup
0≤s≤t

x(s) ≥ ℓ
]

= 2 P
[

x(t) ≥ ℓ
]

=

√

2

π t

∫ ∞

ℓ

exp[−x2

2 t
] dx
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