
5. Markov Processes.

A stochastic process in discrete time is just a sequence {Xj : j ≥ 0} of ran-
dom variables with values in some (X ,F) defined on a probability (Ω,Σ, P ).
It can also be specified by prescribing, in a self consistent manner, the joint
distribution of {X0,X1,X2, . . . ,Xn} for every n. A convenient way of doing
it is by specifying the the distribution p0(dx0) of X0 and the conditional
distributions

pn(x0, x1, . . . , xn−1; dxn)

of Xn given X0, . . . ,Xn−1. Ω can be the product space X∞, i.e. the space
of sequences with values in X . There is a canonical P on the natural σ-field
F∞ on Ω. There is also the sub-σ-fields Fn generated by x0, x1, . . . , xn.
The canonical P will equal p0 on F0 and the conditional distribution of on
Fn given Fn−1 will be given by pn(x0, x1, . . . , xn−1; dxn). In the special
case when pn(x0, x1, . . . , xn−1; dxn) = πn(xn−1, dxn), for n ≥ 1, depends
only on xn−1, the process is called a Markov Process. Of course when they
are just pn(dxn) and do not depend on any xi for 0 ≤ i ≤ n − 1 we have
independent random variables and P is the product measure. If, in the
Markov case, πn(·, ·) is the same π(·, ·) for all n ≥ 1, it is called a Markov
process with stationary transition probabilities.

A simple example is to take X to be a countable set. Then p0 is just the
set of probabilities p0(x) = P [X0 = x], and

P [Xn = y|X0 = x0, · · · ,Xn−1 = xn−1] = πn(x, y)

are the transition probabilities which in the stationary case is independent
of n. It is natural to consider (Ω,Fn,F∞, P ). There are some natural
martingales. For simplicity we limit ourselves to the stationary case.

Theorem. For any function f on X let us define

(πf)(x) =
∑

y

π(x, y)f(y) = E[f(Xn)|Xn−1 = x]

Then

Zn = f(Xn) − f(X0) −

n−1
∑

j=0

(πf − f)(Xj)
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is a martingale with respect to (Ω,Fn, P ).

Proof: Let us compute E[Zn|Fn−1].

E[Zn|Fn−1] = E[f(Xn)|Fn−1] −
n−1
∑

j=0

(πf − f)(Xj)

= (πf)(Xn−1) −

n−1
∑

j=0

(πf − f)(Xj)

= f(Xn−1) −
n−2
∑

j=0

(πf − f)(Xj)

= Zn−1

Remark. If we replace the definition (πf)(x) =
∑

y π(x, y)f(y) with

(πf)(x) =

∫

f(y)π(x, dy)

then the theorem is true for Markov processes on any state space. For
simplicity we will assume that we have a countable state space.

Martingales are a useful tool in studying Markov Processes. Let us look at
some examples.

1. Let A ⊂ X . Define

τA = inf{j : Xj ∈ A}

is the first hitting time of A. It is possible that Xj never hits A in which
case we take τA = ∞. We wish to calculate for λ > 0,

(5.1) φλ(x) = E[e−λτA |X0 = x]

Then if x ∈ A then φλ(x) = 1. Moreover for x /∈ A it is easy to see that

φλ(x) = e−λ
∑

y

π(x, y)φλ(y)
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Clearly 0 ≤ φλ(x) ≤ 1. We will show that the only bounded solution of

(5.2) F (x) = e−λ
∑

y

π(x, y)F (y)

for x /∈ A with F (x) = 1 for x ∈ A is given by (5.1). Let F (x) be a solution
of (5.2). Define

Zn = e−λ n F (Xn)

Then with Σn = σ{X0,X1, . . . ,Xn},

E[Zn+1|Σn] = e−λ (n+1)E[F (Xn+1|Σn]

= e−λ (n+1)
∑

y

π(Xn, y)F (y)

= e−λ nF (Xn)

= Zn

provided Xn /∈ A. One can rewrite this as

E[Zn+1 − Zn|σn] =

{

0 if Xn /∈ A
e−λ nG(Xn) if Xn ∈ A.

with
G(x) = e−λ

∑

y

π(Xn, y)F (y) − F (x)

Therefore

Zn − Z0 −
n−1
∑

j=0

e−λ nG(Xj)1A(Xj)

is a martingale. Let τA is a stopping time and for n ≤ τA Xn /∈ A and
G(Xn) = 0. Therefore {Zn} is bounded uniformly until τA even if τA itself
can be large. Doob’s stopping theorem applies and

E[e−λ τA ] = E[e−λ τAF (XτA
)] = E[Zτ ] = E[Z0] = F (x)

Example. Consider the random walk on Z where π(x, x ± 1) = 1
2 . If one

starts from 0, and τ is the first time ±k is reached calculate E[e−λ τ ]. Solve
the equation

F (x) = e−λ[
1

2
F (x − 1) +

1

2
F (x + 1)]
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for |x| ≤ k − 1, with F (x) = 1 for |x| ≥ k. One can isolate [−k, k]. Need to
solve

F (x − 1) + F (x + 1) − 2eλF (x) = 0

with F (±k) = 1. Solve the quadratic

ρ2 − 2eλρ + 1 = 0

with roots
ρ± = eλ ±

√

e2λ − 1 = e±θ

where θ = log[eλ +
√

e2λ − 1]. The solution is seen to be

F (x) =
eθ x + e−θ x

eθ k + e−θ k

and
F (0) = [cosh(θ k)]−1

Exercise. Start from x > 0. Show that sooner or later 0 is reached.
Calculate E[e−λ τ ] where τ is the first time 0 is reached.

Exercise. What happens when

p = π(x, x − 1) >
1

2
> π(x, x + 1) = q = 1 − p

and when

p = π(x, x − 1) <
1

2
< π(x, x + 1) = q = 1 − p

Example. A game is being played where the probability is 1
2 for each of

two players to win any one round. It is agreed that the first person to win k
rounds will be the winner. They put equal amounts to make a kitty for the
winner to take. Unfortunately the game is interrupted before either player
can win k rounds. It stops when player A needs to win a more rounds, and
player B needs b rounds. 1 ≤ a ≤ k, 1 ≤ b ≤ k. What is the ”fair” way to
divide the kitty between the two players?

Let u(a, b) be the proportion of the kitty that player A should get in a fair
division when he needs a rounds and player B needs b rounds. Since the
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game is fair neither player can expect to gain or lose by playing an extra
game.

u(a, b) =
1

2
u(a − 1, b) +

1

2
u(a, b − 1)

u(0, b) = 1 if b > 0 and u(a, 0) = 0 if a > 0. Solution is

u(a, b) =
1

2a+b−1

∑

a+b−1≥r≥a

(

a + b − 1

r

)

You can verify that this is a solution. Can you show directly ?
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