5. Markov Processes.

A stochastic process in discrete time is just a sequence {X; : j > 0} of ran-
dom variables with values in some (X, F) defined on a probability (€2, 3, P).
It can also be specified by prescribing, in a self consistent manner, the joint
distribution of { Xg, X1, X5, ..., X, } for every n. A convenient way of doing
it is by specifying the the distribution pg(dxg) of Xy and the conditional
distributions

Pn(To, T1,. .., Tp_1;dTy)

of X,, given Xg,...,X,,_1. Q can be the product space X*°, i.e. the space
of sequences with values in X'. There is a canonical P on the natural o-field
Fso on 2. There is also the sub-o-fields F,, generated by xg,x1,...,ZTn,.
The canonical P will equal pg on F; and the conditional distribution of on
F. given F,,_1 will be given by p,(xg,x1,...,Tn_1;dx,). In the special
case when p,(zo,x1,...,Tpn_1;dxy) = Tn(Tn_1,dx,), for n > 1, depends
only on z,,_1, the process is called a Markov Process. Of course when they
are just p,(dz,) and do not depend on any z; for 0 < i < n — 1 we have
independent random variables and P is the product measure. If, in the
Markov case, m,(+,-) is the same = (-,-) for all n > 1, it is called a Markov
process with stationary transition probabilities.

A simple example is to take X to be a countable set. Then pg is just the
set of probabilities po(x) = P[ Xy = z], and
P[Xn - leO = o, - 7Xn—1 - xn—l] = ﬂ-n(xay)

are the transition probabilities which in the stationary case is independent
of n. It is natural to consider (£2,F,,Fs,P). There are some natural
martingales. For simplicity we limit ourselves to the stationary case.

Theorem. For any function f on X let us define

(mf)(x) = w(w,y)f(y) = E[f(Xn)|Xp-1 = a]

Then i
Zn = f(Xn) = f(Xo) = Y _(xf — /)(X;)
j=0



is a martingale with respect to (2, Fy,, P).
Proof: Let us compute E[Z,,|F,—1].

Bl | Faes] = Bl (X)|Fact] = S (nf — (X))
=0
= (5)(Xut) — Y — D)X
)= nf - DX

Remark. If we replace the definition (7 f)(z) = >_, 7(z,y)f(y) with

/f m(z, dy)

then the theorem is true for Markov processes on any state space. For
simplicity we will assume that we have a countable state space.

Martingales are a useful tool in studying Markov Processes. Let us look at
some examples.

1. Let A C X. Define
TA :ll’lf{ij EA}

is the first hitting time of A. It is possible that X; never hits A in which
case we take 74 = 0o. We wish to calculate for A > 0,

(5.1) dx(x) = Ele ™4[ X, = 2]

Then if z € A then ¢y (z) = 1. Moreover for x ¢ A it is easy to see that

= ey m(@,y)oa(y)



Clearly 0 < ¢ (z) < 1. We will show that the only bounded solution of

(5.2) F(z)=e > w(x,y)F(y)

for x ¢ A with F'(x) =1 for x € A is given by (5.1). Let F(x) be a solution
of (5.2). Define
Zn=e " F(X,)

Then with %, = o{ X, X1,..., Xy},
Bl Zp1|%0] = e_k(n-i_l)E[F(Xn-i-l‘Zn]

provided X,, ¢ A. One can rewrite this as

0 if X, ¢ A
E[Zn_|_1 — Zn‘O'n] = {e_knG(Xn) it X, i A.

with
G(x)=e > m(Xn,y)F(y) — F(x)
y
Therefore .
Zn—Zo— Y e G(X;)1a(X;)
j=0

is a martingale. Let 74 is a stopping time and for n < 74 X,, ¢ A and
G(X,) = 0. Therefore {Z, } is bounded uniformly until 74 even if 7,4 itself
can be large. Doob’s stopping theorem applies and

Ele™*"™] = Ble™ "™ F(X,)] = E[Z;] = EZ] = F(x)

Example. Consider the random walk on Z where 7(x,x £ 1) = % If one
starts from 0, and 7 is the first time 4k is reached calculate E[e=*7]. Solve
the equation

F(x) = e_A[%F(x —1)+ %F(:I: +1)]



for || <k —1, with F(xz) =1 for |x| > k. One can isolate [—k, k]. Need to
solve

Flx—1)+F(x+1)—2*F(2) =0
with F'(+k) = 1. Solve the quadratic

P’ —2e*p+1=0

with roots

pr =e £ Ver —1=¢%?

where § = log[e* + 1/e2* — 1]. The solution is seen to be

699: +6—9$

F(x) = Ok L o 0Ok

and
F(0) = [cosh(0 k)]~ !

Exercise. Start from xz > 0. Show that sooner or later 0 is reached.
Calculate E[e~*7] where 7 is the first time 0 is reached.

Exercise. What happens when
1
p=n(r,x —1)> 3 >n(r,c+1)=q=1-—p

and when
1
p:7r(:1:,:19—1)<§<7r(:1:,:19+1):q:1—p

Example. A game is being played where the probability is % for each of
two players to win any one round. It is agreed that the first person to win &
rounds will be the winner. They put equal amounts to make a kitty for the
winner to take. Unfortunately the game is interrupted before either player
can win k rounds. It stops when player A needs to win a more rounds, and
player B needs b rounds. 1 <a <k, 1 <b < k. What is the "fair” way to
divide the kitty between the two players?

Let u(a,b) be the proportion of the kitty that player A should get in a fair
division when he needs a rounds and player B needs b rounds. Since the

4



game is fair neither player can expect to gain or lose by playing an extra
game.

1
u(a,b) = §u(a —1,b) + %u(a, b—1)

u(0,b) =1 if b > 0 and u(a,0) = 0 if @ > 0. Solution is

1 a+b—-1
uad) =gy 2, ( r )

a+b—1>r>a

You can verify that this is a solution. Can you show directly ?



