5. Markov Processes.

A stochastic process in discrete time is just a sequence $\left\{X_{j}: j \geq 0\right\}$ of random variables with values in some $(\mathcal{X}, \mathcal{F})$ defined on a probability (Ω, Σ, P). It can also be specified by prescribing, in a self consistent manner, the joint distribution of $\left\{X_{0}, X_{1}, X_{2}, \ldots, X_{n}\right\}$ for every n. A convenient way of doing it is by specifying the the distribution $p_{0}\left(d x_{0}\right)$ of X_{0} and the conditional distributions

$$
p_{n}\left(x_{0}, x_{1}, \ldots, x_{n-1} ; d x_{n}\right)
$$

of X_{n} given X_{0}, \ldots, X_{n-1}. Ω can be the product space \mathcal{X}^{∞}, i.e. the space of sequences with values in \mathcal{X}. There is a canonical P on the natural σ-field \mathcal{F}_{∞} on Ω. There is also the sub- σ-fields \mathcal{F}_{n} generated by $x_{0}, x_{1}, \ldots, x_{n}$. The canonical P will equal p_{0} on \mathcal{F}_{0} and the conditional distribution of on \mathcal{F}_{n} given \mathcal{F}_{n-1} will be given by $p_{n}\left(x_{0}, x_{1}, \ldots, x_{n-1} ; d x_{n}\right)$. In the special case when $p_{n}\left(x_{0}, x_{1}, \ldots, x_{n-1} ; d x_{n}\right)=\pi_{n}\left(x_{n-1}, d x_{n}\right)$, for $n \geq 1$, depends only on x_{n-1}, the process is called a Markov Process. Of course when they are just $p_{n}\left(d x_{n}\right)$ and do not depend on any x_{i} for $0 \leq i \leq n-1$ we have independent random variables and P is the product measure. If, in the Markov case, $\pi_{n}(\cdot, \cdot)$ is the same $\pi(\cdot, \cdot)$ for all $n \geq 1$, it is called a Markov process with stationary transition probabilities.
A simple example is to take \mathcal{X} to be a countable set. Then p_{0} is just the set of probabilities $p_{0}(x)=P\left[X_{0}=x\right]$, and

$$
P\left[X_{n}=y \mid X_{0}=x_{0}, \cdots, X_{n-1}=x_{n-1}\right]=\pi_{n}(x, y)
$$

are the transition probabilities which in the stationary case is independent of n. It is natural to consider $\left(\Omega, \mathcal{F}_{n}, \mathcal{F}_{\infty}, P\right)$. There are some natural martingales. For simplicity we limit ourselves to the stationary case.
Theorem. For any function f on \mathcal{X} let us define

$$
(\pi f)(x)=\sum_{y} \pi(x, y) f(y)=E\left[f\left(X_{n}\right) \mid X_{n-1}=x\right]
$$

Then

$$
Z_{n}=f\left(X_{n}\right)-f\left(X_{0}\right)-\sum_{j=0}^{n-1}(\pi f-f)\left(X_{j}\right)
$$

is a martingale with respect to $\left(\Omega, \mathcal{F}_{n}, P\right)$.
Proof: Let us compute $E\left[Z_{n} \mid \mathcal{F}_{n-1}\right]$.

$$
\begin{aligned}
E\left[Z_{n} \mid \mathcal{F}_{n-1}\right] & =E\left[f\left(X_{n}\right) \mid \mathcal{F}_{n-1}\right]-\sum_{j=0}^{n-1}(\pi f-f)\left(X_{j}\right) \\
& =(\pi f)\left(X_{n-1}\right)-\sum_{j=0}^{n-1}(\pi f-f)\left(X_{j}\right) \\
& =f\left(X_{n-1}\right)-\sum_{j=0}^{n-2}(\pi f-f)\left(X_{j}\right) \\
& =Z_{n-1}
\end{aligned}
$$

Remark. If we replace the definition $(\pi f)(x)=\sum_{y} \pi(x, y) f(y)$ with

$$
(\pi f)(x)=\int f(y) \pi(x, d y)
$$

then the theorem is true for Markov processes on any state space. For simplicity we will assume that we have a countable state space.

Martingales are a useful tool in studying Markov Processes. Let us look at some examples.

1. Let $A \subset \mathcal{X}$. Define

$$
\tau_{A}=\inf \left\{j: X_{j} \in A\right\}
$$

is the first hitting time of A. It is possible that X_{j} never hits A in which case we take $\tau_{A}=\infty$. We wish to calculate for $\lambda>0$,

$$
\begin{equation*}
\phi_{\lambda}(x)=E\left[e^{-\lambda \tau_{A}} \mid X_{0}=x\right] \tag{5.1}
\end{equation*}
$$

Then if $x \in A$ then $\phi_{\lambda}(x)=1$. Moreover for $x \notin A$ it is easy to see that

$$
\phi_{\lambda}(x)=e^{-\lambda} \sum_{y} \pi(x, y) \phi_{\lambda}(y)
$$

Clearly $0 \leq \phi_{\lambda}(x) \leq 1$. We will show that the only bounded solution of

$$
\begin{equation*}
F(x)=e^{-\lambda} \sum_{y} \pi(x, y) F(y) \tag{5.2}
\end{equation*}
$$

for $x \notin A$ with $F(x)=1$ for $x \in A$ is given by (5.1). Let $F(x)$ be a solution of (5.2). Define

$$
Z_{n}=e^{-\lambda n} F\left(X_{n}\right)
$$

Then with $\Sigma_{n}=\sigma\left\{X_{0}, X_{1}, \ldots, X_{n}\right\}$,

$$
\begin{aligned}
E\left[Z_{n+1} \mid \Sigma_{n}\right]=e^{-\lambda(n+1)} E\left[F\left(X_{n+1} \mid \Sigma_{n}\right]\right. & \\
& =e^{-\lambda(n+1)} \sum_{y} \pi\left(X_{n}, y\right) F(y) \\
& =e^{-\lambda n} F\left(X_{n}\right) \\
& =Z_{n}
\end{aligned}
$$

provided $X_{n} \notin A$. One can rewrite this as

$$
E\left[Z_{n+1}-Z_{n} \mid \sigma_{n}\right]= \begin{cases}0 & \text { if } X_{n} \notin A \\ e^{-\lambda n} G\left(X_{n}\right) & \text { if } X_{n} \in A\end{cases}
$$

with

$$
G(x)=e^{-\lambda} \sum_{y} \pi\left(X_{n}, y\right) F(y)-F(x)
$$

Therefore

$$
Z_{n}-Z_{0}-\sum_{j=0}^{n-1} e^{-\lambda n} G\left(X_{j}\right) \mathbf{1}_{A}\left(X_{j}\right)
$$

is a martingale. Let τ_{A} is a stopping time and for $n \leq \tau_{A} X_{n} \notin A$ and $G\left(X_{n}\right)=0$. Therefore $\left\{Z_{n}\right\}$ is bounded uniformly until τ_{A} even if τ_{A} itself can be large. Doob's stopping theorem applies and

$$
E\left[e^{-\lambda \tau_{A}}\right]=E\left[e^{-\lambda \tau_{A}} F\left(X_{\tau_{A}}\right)\right]=E\left[Z_{\tau}\right]=E\left[Z_{0}\right]=F(x)
$$

Example. Consider the random walk on Z where $\pi(x, x \pm 1)=\frac{1}{2}$. If one starts from 0 , and τ is the first time $\pm k$ is reached calculate $E\left[e^{-\lambda \tau}\right]$. Solve the equation

$$
F(x)=e^{-\lambda}\left[\frac{1}{2} F(x-1)+\frac{1}{2} F(x+1)\right]
$$

for $|x| \leq k-1$, with $F(x)=1$ for $|x| \geq k$. One can isolate $[-k, k]$. Need to solve

$$
F(x-1)+F(x+1)-2 e^{\lambda} F(x)=0
$$

with $F(\pm k)=1$. Solve the quadratic

$$
\rho^{2}-2 e^{\lambda} \rho+1=0
$$

with roots

$$
\rho_{ \pm}=e^{\lambda} \pm \sqrt{e^{2 \lambda}-1}=e^{ \pm \theta}
$$

where $\theta=\log \left[e^{\lambda}+\sqrt{\left.e^{2 \lambda}-1\right]}\right.$. The solution is seen to be

$$
F(x)=\frac{e^{\theta x}+e^{-\theta x}}{e^{\theta k}+e^{-\theta k}}
$$

and

$$
F(0)=[\cosh (\theta k)]^{-1}
$$

Exercise. Start from $x>0$. Show that sooner or later 0 is reached. Calculate $E\left[e^{-\lambda \tau}\right]$ where τ is the first time 0 is reached.

Exercise. What happens when

$$
p=\pi(x, x-1)>\frac{1}{2}>\pi(x, x+1)=q=1-p
$$

and when

$$
p=\pi(x, x-1)<\frac{1}{2}<\pi(x, x+1)=q=1-p
$$

Example. A game is being played where the probability is $\frac{1}{2}$ for each of two players to win any one round. It is agreed that the first person to win k rounds will be the winner. They put equal amounts to make a kitty for the winner to take. Unfortunately the game is interrupted before either player can win k rounds. It stops when player A needs to win a more rounds, and player B needs b rounds. $1 \leq a \leq k, 1 \leq b \leq k$. What is the "fair" way to divide the kitty between the two players?
Let $u(a, b)$ be the proportion of the kitty that player A should get in a fair division when he needs a rounds and player B needs b rounds. Since the
game is fair neither player can expect to gain or lose by playing an extra game.

$$
u(a, b)=\frac{1}{2} u(a-1, b)+\frac{1}{2} u(a, b-1)
$$

$u(0, b)=1$ if $b>0$ and $u(a, 0)=0$ if $a>0$. Solution is

$$
u(a, b)=\frac{1}{2^{a+b-1}} \sum_{a+b-1 \geq r \geq a}\binom{a+b-1}{r}
$$

You can verify that this is a solution. Can you show directly?

