
Martingales II

Super and sub-martingales. In the definition of martingale we demanded that for every
n,

E[Xn|Fn−1] = Xn−1

Instead if for every n
E[Xn|Fn−1] ≥ Xn−1

then {Xn} is called a sub-martingale and if for every n,

E[Xn|Fn−1] ≤ Xn−1

it is called a super-martingale. An important result is Jensen’s inequality.

Theorem. If Xn is a martingale and if φ(x) is a convex function of x then φ(Xn) = Yn is
a sub-martingale, provided φ(Xn) is integrable.

Proof: By duality any convex function φ(x) has a representation

φ(x) = sup
ℓ

[ℓ x− ψ(ℓ)]

for some ψ, (which is convex as well). By linearity of conditional expectation, for every ℓ,

E[ℓXn − ψ(ℓ)|Fn−1] = ℓXn−1 − ψ(ℓ)

By monotonicity of condition expectation ( a consequence of non-negativity and linearity)

E[φ(Xn)|Fn−1] ≥ E[ℓXn − ψ(ℓ)|Fn−1] = ℓXn−1 − ψ(ℓ)

for every ℓ and hence

E[φ(Xn)|Fn−1] ≥ sup
ℓ

E[ℓXn − ψ(ℓ)|Fn−1] = φ(Xn−1)

For those worried about sets of measure 0, we can limit ourselves to a countable set of
values of ℓ.

In particular if Xn is a martingale then for α ≥ 1, |Xn|
α is a sub-martingale. This

observation provides an important inequality.

Theorem. (Doob’s Inequality.) Let {Xn} be a martingale. Let ξn = sup0≤j≤n |Xj |.
Then

P [ξn ≥ ℓ] ≤
1

ℓ

∫

|ξn|≥ℓ

|Xn|dP

Proof: Let us write En = {ω : ξn ≥ n} as the disjoint union of {Fj : 0 ≤ j ≤ n} where

Fj = {ω : |Xi| < ℓ for 0 ≤ j ≤ j − 1, |Xj| ≥ ℓ}
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Then

P (Fj) ≤
1

ℓ

∫

Fj

|Xj|dP ≤

∫

Fj

|Xn|dp

because |Xn| is a sub-martingale and Fj ∈ Fj . Summing ove 0 ≤ j ≤ n we get

P (En) ≤

∫

En

|Xn|dP

Lemma: Let Y and ξ be two non-negative random variables such that

P [ξ ≥ ℓ] ≤
1

ℓ

∫

ξ≥ℓ

Y dP

for ℓ ≥ 0. Then for p > 1

∫

ξp dP ≤

(

p

p− 1

)p ∫

Y p dP

Proof: We can write
∫

ξp dP = −

∫

ℓpdP [ξ ≥ ℓ] = p

∫

P [ξ ≥ ℓ]ℓp−1dℓ

≤ p

∫ ∫

ξ≥ℓ

ℓp−2Y dPdℓ =
p

p− 1

∫

ξp−1 Y dP

≤
p

p− 1

[
∫

ξp dP

]

p−1

p
[

∫

Y p dP

]
1

p

leading to
[

∫

ξp dP

]
1

p

≤
p

p− 1

[
∫

Y p dP

]
1

p

This proof assumes that
∫

ξp dP < ∞. If we only assume that
∫

Y p dP is finite, then we
can truncate ξ by ξa = ξ ∧ a. Then it is easy to verify that ξa satisfies the assumptions of
the lemma and we get the inequality

[
∫

ξp
a dP

]
1

p

≤
p

p− 1

[
∫

Y p dP

]
1

p

We let a→ ∞ to prove the lemma. A consequence of the lemma is

Theorem. Let {Xn} be a martingale. Then for p > 1, if |Xn| is in Lp,

∫

[ sup
0≤j≤n

|Xn|]
p dP ≤

(

p

p− 1

)p ∫

|Xn|
p dP
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Doob decomposition. If Xn is any sequence of integrable random variables and Xn is
measurable with respect to an increasing family of sub-σ-fields Fn ⊂ F we can write

Xn = Yn +An

where Yn is a martingale with respect to Fn and An is Fn−1 measurable. Such a decom-
position is unique. To see that the decomposition exists define

an(ω) = E[Xn+1 −Xn(ω)|Fn]

An =

n−1
∑

j=0

aj(ω)

Then Xn = Yn + An withYn = (Xn − An). Clearly An is Fn−1 measurable and

E[Yn|Fn−1] = E[Xn −An|Fn−1 = Xn−1 − An + E[Xn −Xn−1|Fn−1]

= Xn−1 −An + an = Xn−1 −An−1 = Yn−1.

proving that Yn is a martingale. As for uniqueness if Xn = Yn+An and Yn is a martingale,
then

0 = E[Yn − Yn−1|Fn−1] = E[Xn −Xn−1 −An + An−1|Fn−1]

= E[Xn −Xn−1|Fn−1] − An +An−1

establishing that an = An −An−1 = E[Xn −Xn−1|Fn−1]. Xn is a sub-martingale if An is
increasing or an ≥ 0. Similarly Xn is a super-martingale if An is decreasing or an ≤ 0.

Infinite martingale sequenecs. One way of generating an infinite martingale sequence
Xn is to start with X(ω) which is integrable on (Ω,F , P ) and define Xn = E[X |Fn]. It
is easy to check from the properties of conditional expectation that E[Xn|Fn−1] = Xn−1.
Assuming that the σ-field F is generated by Fn, It is a not a difficult result to prove that
Xn → X with probability 1 and in L1(P ). Moreover if for any 1 < p < ∞ if X ∈ Lp,
Xn → X in Lp(P ). The proofs are straight forward and we will give a sketch. Note
that from standard measure theory, if F is generated by ∪nFn, then W = ∪nL1(ω,Fn, P )
is dense in L1(Ω,F , P ). If X ∈ W then Xn = X for large n and the convergence is
trivial. Then by standard approximation, if X ∈ L1(P ), approximating it by Y ∈ W ,
since Yn = E[Y |Fn] → Y in L1

lim sup
n→∞

‖Xn −X‖1 ≤ ‖X − Y ‖1 + lim sup
n→∞

‖Xn − Yn‖1 ≤ 2‖X − Y ‖1

Since we can choose Y so that ‖X − Y ‖1 is small we are done. The same argument works
to prove almost sure convergence as well. We note that from Doob’s inequality

P [ sup
0≤j≤n

|Xj| ≥ ℓ] ≤
1

ℓ
E[|Xn|] ≤

1

ℓ
E[|X |]

Hence P [sup0≤j<∞ |Xj| <∞] = 1 and we need only to prove, that for any ǫ > 0,

P [lim sup
n→∞

Xn − lim inf
n→∞

Xn ≥ ǫ] = 0
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Since for Y ∈W ,

P [lim sup
n→∞

Yn − lim inf
n→∞

Yn ≥ ǫ] = 0

it is enough to estimate

P [ sup
1≤n<∞

|Xn − Yn| ≥ ǫ] ≤
1

ǫ
E[|X − Y |]

which can now be made arbitrarily small by the choice of Y ∈W .

Given a martinagle sequence Xn does it arise from some X in Lp(P ). A necessary condition
is that ‖Xn‖p must be uniformly bounded. If it is and p > 1, it is also weakly compact in
Lp, and a weak limit will produce the needed X . If p = 1, uniform integrability is required
to establish weak compactness. Otherwise Xn → X almost surely but not in L1(P ) and
Xn does not arise from X by conditional expectation.

Examples and Problems.

1. If λ, µ are two probability measures such that λ << µ on each Fn but not on F
generated by ∪nFn, the radon-Nikodym derivative

Xn(ω) =
dλ

dµ

∣

∣

∣

∣

Fn

is a martingale but cannot come from any X because if it did we would have X = dλ
dµ

∣

∣

F
and λ << µ on F .

2. One can take Ω to be the unit interval, F to be the Borel σ-field and Fn to be the
partition [ j−1

2n ,
j
2n ] of [0, 1]. If µ is Lebesgue measure, the any λ is absoulutely continuous

with respect to µ and

dλ

dµ

∣

∣

∣

∣

Fn

= 2nλ([
j − 1

2n
,
j

2n
]) for x ∈ [

j − 1

2n
,
j

2n
]

λ can be singular with respect to Lebesgue measure.

3. Let Ω be the space of real sequences (x1, . . . , xn, . . .) with the product σ-field. P is the
product measure of standard normal distributions with mean 0 variance 1. In other words
{xi} are i.i.d standard normal variables under P . Show that

Xn(ω) = exp[λ (x1 + · · ·+ xn) −
λ2

2
n]

is a martinagle with respect to (Ω,Fn, P where Fn is the σ-field corresponding to the first
n coordinates x1, . . . , xn. Is it uniformly integrable? If not is there a Q on F such that
Xn = dQ

dP
|Fn

. If so, can you describe Q?
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4. Go back to example 2 and define {xj} as the entries in the binary expansion of x ∈ [0, 1].
What is the joint distribution of {xj} under the Lebesgue measure µ? Can you determine
c(λ) such that

Xn(ω) = exp[λ (x1 + . . .+ xn) − c(λ)n]

is a martingale? What should be the measure λ on [0, 1] be so that Xn is the Radon-
Nikodym derivative dλ

dµ
on Fn?

5. Let Xi = ±1 with probability 1

2
, and be mutually independent. Sn = x+X1+X2+· · ·+

Xn is the standard random walk starting from x. Given 0 < x < N , what is the probability
that Sn reaches 0 before reaching N? Use the stopping time τ = inf{n : Sn = 0 or N},
and the martingale property of Sn.

6. S2
n is a sub-martingale. What is its Doob decomposition? Can you use it to calculate

E[τ ] = m(x)?

7. In examples 5 and 6, while working with τ , which is not a bounded stopping time how
can you justify your calculations?
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