Martingales I1

Super and sub-martingales. In the definition of martingale we demanded that for every
n7

E[Xn|fn—1] — Xn—l

Instead if for every n
E[Xn|fn—l] Z Xn—l

then {X,,} is called a sub-martingale and if for every n,
E[Xn|fn—1] S Xn—l

it is called a super-martingale. An important result is Jensen’s inequality.

Theorem. If X,, is a martingale and if ¢(z) is a convex function of x then ¢(X,) =Y, is
a sub-martingale, provided ¢(X,,) is integrable.

Proof: By duality any convex function ¢(x) has a representation
$(@) = sup[lz — (0)

for some 1, (which is convex as well). By linearity of conditional expectation, for every ¢,
ElX,, — ()| Fp1] = €Xp1 — ¥ (£)
By monotonicity of condition expectation ( a consequence of non-negativity and linearity)
Elo(X)|Fr—1] 2 E[{X, — (0)|Fp—1] = €X5—1 — ()
for every ¢ and hence

E[¢(X0)|Fn] = Sup E[Xn — (0| Fna] = ¢(Xn1)

For those worried about sets of measure 0, we can limit ourselves to a countable set of
values of /.

In particular if X,, is a martingale then for « > 1, |X,,|* is a sub-martingale. This
observation provides an important inequality.

Theorem. (Doob’s Inequality.) Let {X,} be a martingale. Let §,, = supg<;<, |Xj|.
Then

1
Jlen1>e
Proof: Let us write E,, = {w: &, > n} as the disjoint union of {F} : 0 < j < n} where

Fi={w:|Xj|<lfor0<j<j—1,|X;| >/}
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Then .
P(F)) < —/ IledPS/ | X |dp
¢ Fj F;

because | X,,| is a sub-martingale and F; € F;. Summing ove 0 < j < n we get

P(E,) < / IX,,|dP
E,

Lemma: Let Y and £ be two non-negative random variables such that

P[gzﬁ]gl/ Y dP
€ e

for £ > 0. Then for p > 1

feus () fro

Proof: We can write

/gp dP = — /epdp[g > () = p/P[£ > ()eP—tde
gp// (P72Y dPdl = L/gp—lyczp
=Y p—1

izl o] [fraf

el <yt fro]

This proof assumes that [ &P dP < oco. If we only assume that [Y? dP is finite, then we
can truncate £ by &, = £ A a. Then it is easy to verify that £, satisfies the assumptions of
the lemma and we get the inequality

[Jaur] <25 [frrar]

We let a — oo to prove the lemma. A consequence of the lemma is

leading to

Theorem. Let {X,,} be a martingale. Then for p > 1, if | X,,| is in L,,

p
/[ sup | X, [P dP < (L) /\Xn\de
0<j<n p—1
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Doob decomposition. If X, is any sequence of integrable random variables and X, is
measurable with respect to an increasing family of sub-o-fields F,, C F we can write

X,=Y,+ A,

where Y,, is a martingale with respect to F,, and A,, is F,,_1 measurable. Such a decom-
position is unique. To see that the decomposition exists define

an(w) = E[Xn1 — Xp(w)|Fy]
n—1
An — Z(:) aj(w>

Then X,, =Y, + A, withY,, = (X,, — A,). Clearly A,, is F,,_1 measurable and

E[Yn‘fn—l] — E[Xn - An‘fn—l — Xn—l - An + E[Xn - Xn—l‘fn—l]
=Xn1— An +an =Xp_1— An—l =Y, 1.

proving that Y;, is a martingale. As for uniqueness if X,, = Y,,+ A,, and Y,, is a martingale,
then
0= E[Yn - Yn—l‘fn—l] — E[Xn - Xn—l - An + An—l‘fn—l]
= E[Xn - Xn—1|Fn—1] - An + An—l

establishing that a, = A, — A1 = E[X,, — X»—1|Fn-1]. X, is a sub-martingale if A,, is
increasing or a, > 0. Similarly X,, is a super-martingale if A,, is decreasing or a,, < 0.

Infinite martingale sequenecs. One way of generating an infinite martingale sequence
Xy, is to start with X (w) which is integrable on (92, F, P) and define X,, = E[X|F,]. It
is easy to check from the properties of conditional expectation that E[X,|F,_1] = X,—1.
Assuming that the o-field F is generated by F,,, It is a not a difficult result to prove that
X, — X with probability 1 and in L;(P). Moreover if for any 1 < p < oo if X € L,
X, — X in L,(P). The proofs are straight forward and we will give a sketch. Note
that from standard measure theory, if F is generated by U, F,,, then W = U,, L1 (w, F,, P)
is dense in L;(Q2,F,P). If X € W then X,, = X for large n and the convergence is
trivial. Then by standard approximation, if X € L;(P), approximating it by Y € W,
since Y, = E[Y|F,] = Y in I,

limsup || X,, — X||; < ||X =Y} + limsup || X,, — Yao|[1 <2||X =Y,

n—oo n—oo

Since we can choose Y so that || X — Y|; is small we are done. The same argument works
to prove almost sure convergence as well. We note that from Doob’s inequality

Pl sup |X,;| >4 <

0<j<n

Ell Xl < S EX]]

1
‘

|-

Hence P[supg< ;.. |Xj| < o] =1 and we need only to prove, that for any € > 0,

P[limsup X,, — liminf X,, > ¢] =0

n—oo
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Since for Y € W,
PllimsupY,, —liminfY, > ¢ =0

N—00 n— 00

it is enough to estimate

—_

P sup |Xp—Yo|>¢l <

1<n<oo €

EflX = Y]]

which can now be made arbitrarily small by the choice of Y € W.

Given a martinagle sequence X, does it arise from some X in L,(P). A necessary condition
is that || X, ||, must be uniformly bounded. If it is and p > 1, it is also weakly compact in
L,, and a weak limit will produce the needed X. If p = 1, uniform integrability is required
to establish weak compactness. Otherwise X,, — X almost surely but not in L;(P) and
X,, does not arise from X by conditional expectation.

Examples and Problems.

1. If A\, p are two probability measures such that A << p on each F,, but not on F
generated by U,F,, the radon-Nikodym derivative

_dx

X -2
=g
is a martingale but cannot come from any X because if it did we would have X = % } F
and A << pon F.

2. One can take 2 to be the unit interval, F to be the Borel o-field and F,, to be the

partition [L:1, ] of [0, 1]. If 4 is Lebesgue measure, the any A is absoulutely continuous

with respect to p and

dX i—1 j

1
SAL _ony J
du |z ( 2n 7 on

) forxe[an ,2—n]

A can be singular with respect to Lebesgue measure.

3. Let 2 be the space of real sequences (z1,...,T,,...) with the product o-field. P is the
product measure of standard normal distributions with mean 0 variance 1. In other words
{z;} are i.i.d standard normal variables under P. Show that

)\2

Xn(w) =exp[A (21 + -+ 2p) — ?n]

is a martinagle with respect to (2, F,,, P where F,, is the o-field corresponding to the first
n coordinates x1,...,z,. Is it uniformly integrable? If not is there a () on F such that
X, = %Vn. If so, can you describe Q7



4. Go back to example 2 and define {z;} as the entries in the binary expansion of x € [0, 1].
What is the joint distribution of {z;} under the Lebesgue measure ;? Can you determine
¢(\) such that

Xn(w) =expA(x1+...+2,) —c(N)n]

is a martingale? What should be the measure A on [0, 1] be so that X, is the Radon-
dA

Nikodym derivative 4 on Fn?

5. Let X; = 41 with probability %, and be mutually independent. S,, = x4+ X1+ Xo+---+
X, is the standard random walk starting from z. Given 0 < x < NN, what is the probability
that S, reaches 0 before reaching N7 Use the stopping time 7 = inf{n : S, = 0 or N},
and the martingale property of 5,,.

6. S2 is a sub-martingale. What is its Doob decomposition? Can you use it to calculate
E[r] =m(x)?

7. In examples 5 and 6, while working with 7, which is not a bounded stopping time how
can you justify your calculations?



