Martingales II

Super and sub-martingales. In the definition of martingale we demanded that for every n,

$$E[X_n | \mathcal{F}_{n-1}] = X_{n-1}$$

Instead if for every n

$$E[X_n | \mathcal{F}_{n-1}] \ge X_{n-1}$$

then $\{X_n\}$ is called a sub-martingale and if for every n,

$$E[X_n | \mathcal{F}_{n-1}] \le X_{n-1}$$

it is called a super-martingale. An important result is Jensen's inequality.

Theorem. If X_n is a martingale and if $\phi(x)$ is a convex function of x then $\phi(X_n) = Y_n$ is a sub-martingale, provided $\phi(X_n)$ is integrable.

Proof: By duality any convex function $\phi(x)$ has a representation

$$\phi(x) = \sup_{\ell} [\ell \, x - \psi(\ell)]$$

for some ψ , (which is convex as well). By linearity of conditional expectation, for every ℓ ,

$$E[\ell X_n - \psi(\ell) | \mathcal{F}_{n-1}] = \ell X_{n-1} - \psi(\ell)$$

By monotonicity of condition expectation (a consequence of non-negativity and linearity)

$$E[\phi(X_n)|\mathcal{F}_{n-1}] \ge E[\ell X_n - \psi(\ell)|\mathcal{F}_{n-1}] = \ell X_{n-1} - \psi(\ell)$$

for every ℓ and hence

$$E[\phi(X_n)|\mathcal{F}_{n-1}] \ge \sup_{\ell} E[\ell X_n - \psi(\ell)|\mathcal{F}_{n-1}] = \phi(X_{n-1})$$

For those worried about sets of measure 0, we can limit ourselves to a countable set of values of ℓ .

In particular if X_n is a martingale then for $\alpha \ge 1$, $|X_n|^{\alpha}$ is a sub-martingale. This observation provides an important inequality.

Theorem. (Doob's Inequality.) Let $\{X_n\}$ be a martingale. Let $\xi_n = \sup_{0 \le j \le n} |X_j|$. Then

$$P[\xi_n \ge \ell] \le \frac{1}{\ell} \int_{|\xi_n| \ge \ell} |X_n| dP$$

Proof: Let us write $E_n = \{\omega : \xi_n \ge n\}$ as the disjoint union of $\{F_j : 0 \le j \le n\}$ where

$$F_j = \{ \omega : |X_i| < \ell \text{ for } 0 \le j \le j - 1, |X_j| \ge \ell \}$$

Then

$$P(F_j) \le \frac{1}{\ell} \int_{F_j} |X_j| dP \le \int_{F_j} |X_n| dp$$

because $|X_n|$ is a sub-martingale and $F_j \in \mathcal{F}_j$. Summing ove $0 \leq j \leq n$ we get

$$P(E_n) \le \int_{E_n} |X_n| dP$$

Lemma: Let Y and ξ be two non-negative random variables such that

$$P[\xi \ge \ell] \le \frac{1}{\ell} \int_{\xi \ge \ell} Y \, dP$$

for $\ell \geq 0$. Then for p > 1

$$\int \xi^p \, dP \le \left(\frac{p}{p-1}\right)^p \int Y^p \, dP$$

Proof: We can write

$$\int \xi^{p} dP = -\int \ell^{p} dP[\xi \ge \ell] = p \int P[\xi \ge \ell] \ell^{p-1} d\ell$$
$$\le p \int \int_{\xi \ge \ell} \ell^{p-2} Y dP d\ell = \frac{p}{p-1} \int \xi^{p-1} Y dP$$
$$\le \frac{p}{p-1} \left[\int \xi^{p} dP \right]^{\frac{p-1}{p}} \left[\int Y^{p} dP \right]^{\frac{1}{p}}$$

leading to

$$\left[\int \xi^p \, dP\right]^{\frac{1}{p}} \le \frac{p}{p-1} \left[\int Y^p \, dP\right]^{\frac{1}{p}}$$

This proof assumes that $\int \xi^p dP < \infty$. If we only assume that $\int Y^p dP$ is finite, then we can truncate ξ by $\xi_a = \xi \wedge a$. Then it is easy to verify that ξ_a satisfies the assumptions of the lemma and we get the inequality

$$\left[\int \xi_a^p \, dP\right]^{\frac{1}{p}} \le \frac{p}{p-1} \left[\int Y^p \, dP\right]^{\frac{1}{p}}$$

We let $a \to \infty$ to prove the lemma. A consequence of the lemma is **Theorem.** Let $\{X_n\}$ be a martingale. Then for p > 1, if $|X_n|$ is in L_p ,

$$\int [\sup_{0 \le j \le n} |X_n|]^p \, dP \le \left(\frac{p}{p-1}\right)^p \int |X_n|^p \, dP$$

Doob decomposition. If X_n is any sequence of integrable random variables and X_n is measurable with respect to an increasing family of sub- σ -fields $\mathcal{F}_n \subset \mathcal{F}$ we can write

$$X_n = Y_n + A_n$$

where Y_n is a martingale with respect to \mathcal{F}_n and A_n is \mathcal{F}_{n-1} measurable. Such a decomposition is unique. To see that the decomposition exists define

$$a_n(\omega) = E[X_{n+1} - X_n(\omega)|\mathcal{F}_n]$$
$$A_n = \sum_{j=0}^{n-1} a_j(\omega)$$

Then $X_n = Y_n + A_n$ with $Y_n = (X_n - A_n)$. Clearly A_n is \mathcal{F}_{n-1} measurable and

$$E[Y_n|\mathcal{F}_{n-1}] = E[X_n - A_n|\mathcal{F}_{n-1}] = X_{n-1} - A_n + E[X_n - X_{n-1}|\mathcal{F}_{n-1}]$$

= $X_{n-1} - A_n + a_n = X_{n-1} - A_{n-1} = Y_{n-1}.$

proving that Y_n is a martingale. As for uniqueness if $X_n = Y_n + A_n$ and Y_n is a martingale, then

$$0 = E[Y_n - Y_{n-1} | \mathcal{F}_{n-1}] = E[X_n - X_{n-1} - A_n + A_{n-1} | \mathcal{F}_{n-1}]$$

= $E[X_n - X_{n-1} | \mathcal{F}_{n-1}] - A_n + A_{n-1}$

establishing that $a_n = A_n - A_{n-1} = E[X_n - X_{n-1} | \mathcal{F}_{n-1}]$. X_n is a sub-martingale if A_n is increasing or $a_n \ge 0$. Similarly X_n is a super-martingale if A_n is decreasing or $a_n \le 0$.

Infinite martingale sequences. One way of generating an infinite martingale sequence X_n is to start with $X(\omega)$ which is integrable on (Ω, \mathcal{F}, P) and define $X_n = E[X|\mathcal{F}_n]$. It is easy to check from the properties of conditional expectation that $E[X_n|\mathcal{F}_{n-1}] = X_{n-1}$. Assuming that the σ -field \mathcal{F} is generated by \mathcal{F}_n , It is a not a difficult result to prove that $X_n \to X$ with probability 1 and in $L_1(P)$. Moreover if for any $1 if <math>X \in L_p$, $X_n \to X$ in $L_p(P)$. The proofs are straight forward and we will give a sketch. Note that from standard measure theory, if \mathcal{F} is generated by $\cup_n \mathcal{F}_n$, then $W = \bigcup_n L_1(\omega, \mathcal{F}_n, P)$ is dense in $L_1(\Omega, \mathcal{F}, P)$. If $X \in W$ then $X_n = X$ for large n and the convergence is trivial. Then by standard approximation, if $X \in L_1(P)$, approximating it by $Y \in W$, since $Y_n = E[Y|\mathcal{F}_n] \to Y$ in L_1

$$\limsup_{n \to \infty} \|X_n - X\|_1 \le \|X - Y\|_1 + \limsup_{n \to \infty} \|X_n - Y_n\|_1 \le 2\|X - Y\|_1$$

Since we can choose Y so that $||X - Y||_1$ is small we are done. The same argument works to prove almost sure convergence as well. We note that from Doob's inequality

$$P[\sup_{0 \le j \le n} |X_j| \ge \ell] \le \frac{1}{\ell} E[|X_n|] \le \frac{1}{\ell} E[|X|]$$

Hence $P[\sup_{0 \le j \le \infty} |X_j| \le \infty] = 1$ and we need only to prove, that for any $\epsilon > 0$,

$$P[\limsup_{n \to \infty} X_n - \liminf_{n \to \infty} X_n \ge \epsilon] = 0$$

Since for $Y \in W$,

$$P[\limsup_{n \to \infty} Y_n - \liminf_{n \to \infty} Y_n \ge \epsilon] = 0$$

it is enough to estimate

$$P[\sup_{1 \le n < \infty} |X_n - Y_n| \ge \epsilon] \le \frac{1}{\epsilon} E[|X - Y|]$$

which can now be made arbitrarily small by the choice of $Y \in W$.

Given a martinagle sequence X_n does it arise from some X in $L_p(P)$. A necessary condition is that $||X_n||_p$ must be uniformly bounded. If it is and p > 1, it is also weakly compact in L_p , and a weak limit will produce the needed X. If p = 1, uniform integrability is required to establish weak compactness. Otherwise $X_n \to X$ almost surely but not in $L_1(P)$ and X_n does not arise from X by conditional expectation.

Examples and Problems.

1. If λ , μ are two probability measures such that $\lambda \ll \mu$ on each \mathcal{F}_n but not on \mathcal{F} generated by $\bigcup_n \mathcal{F}_n$, the radon-Nikodym derivative

$$X_n(\omega) = \frac{d\lambda}{d\mu} \bigg|_{\mathcal{F}_n}$$

is a martingale but cannot come from any X because if it did we would have $X = \frac{d\lambda}{d\mu}\Big|_{\mathcal{F}}$ and $\lambda \ll \mu$ on \mathcal{F} .

2. One can take Ω to be the unit interval, \mathcal{F} to be the Borel σ -field and \mathcal{F}_n to be the partition $[\frac{j-1}{2^n}, \frac{j}{2^n}]$ of [0, 1]. If μ is Lebesgue measure, the any λ is absould even the solution with respect to μ and

$$\frac{d\lambda}{d\mu}\Big|_{\mathcal{F}_n} = 2^n \lambda(\left[\frac{j-1}{2^n}, \frac{j}{2^n}\right]) \text{ for } x \in \left[\frac{j-1}{2^n}, \frac{j}{2^n}\right]$$

 λ can be singular with respect to Lebesgue measure.

3. Let Ω be the space of real sequences $(x_1, \ldots, x_n, \ldots)$ with the product σ -field. P is the product measure of standard normal distributions with mean 0 variance 1. In other words $\{x_i\}$ are i.i.d standard normal variables under P. Show that

$$X_n(\omega) = \exp[\lambda \left(x_1 + \dots + x_n\right) - \frac{\lambda^2}{2}n]$$

is a martinagle with respect to $(\Omega, \mathcal{F}_n, P$ where \mathcal{F}_n is the σ -field corresponding to the first n coordinates x_1, \ldots, x_n . Is it uniformly integrable? If not is there a Q on \mathcal{F} such that $X_n = \frac{dQ}{dP}|_{\mathcal{F}_n}$. If so, can you describe Q?

4. Go back to example **2** and define $\{x_j\}$ as the entries in the binary expansion of $x \in [0, 1]$. What is the joint distribution of $\{x_j\}$ under the Lebesgue measure μ ? Can you determine $c(\lambda)$ such that

$$X_n(\omega) = \exp[\lambda \left(x_1 + \ldots + x_n\right) - c(\lambda) n]$$

is a martingale? What should be the measure λ on [0,1] be so that X_n is the Radon-Nikodym derivative $\frac{d\lambda}{d\mu}$ on \mathcal{F}_n ?

5. Let $X_i = \pm 1$ with probability $\frac{1}{2}$, and be mutually independent. $S_n = x + X_1 + X_2 + \cdots + X_n$ is the standard random walk starting from x. Given 0 < x < N, what is the probability that S_n reaches 0 before reaching N? Use the stopping time $\tau = \inf\{n : S_n = 0 \text{ or } N\}$, and the martingale property of S_n .

6. S_n^2 is a sub-martingale. What is its Doob decomposition? Can you use it to calculate $E[\tau] = m(x)$?

7. In examples 5 and 6, while working with τ , which is not a bounded stopping time how can you justify your calculations?