3. Martingales I.

Let us start with a sequence $\left\{X_{i}\right\}$ of independent random variables with $E\left[X_{i}\right]=0$ and $E\left[X_{i}^{2}\right]=1$. We saw earlier that for a sequence $\left\{a_{j}\right\}$ of constants

$$
S=\sum_{i=1}^{\infty} a_{i} X_{i}
$$

will converge with probability 1 and in mean square provided

$$
\sum_{j} a_{j}^{2}<\infty
$$

We shall now see that actually $a_{j}\left(X_{1}, X_{2}, \ldots, X_{j-1}\right)$ can be a function of X_{1}, \ldots, X_{j-1}. If they satisfy

$$
\sum_{j} E\left[a_{j}\left(X_{1}, \ldots, X_{j-1}\right)^{2}\right]<\infty
$$

then the series

$$
S=\sum_{j=1}^{\infty} a_{j}\left(X_{1}, X_{2}, \ldots, X_{j-1}\right) X_{j}
$$

will converge. Let us show for the present convergence of

$$
S_{n}=\sum_{j=1}^{n} a_{j}\left(X_{1}, X_{2}, \ldots, X_{j-1}\right) X_{j}
$$

to S in $L_{2}(P)$. This requires us to show that

$$
\lim _{\substack{n \rightarrow \infty \\ m \rightarrow \infty}} E\left[\left|S_{n}-S_{m}\right|^{2}\right]=0
$$

A straight forward computation of

$$
E\left[\left[\sum_{j=m+1}^{n} a_{j}\left(X_{1}, \ldots, X_{j-1}\right) X_{j}\right]^{2}\right]
$$

shows that the non-diagonal terms are 0 . If $i \neq j$, either X_{i} or X_{j} sticks out and makes the expectation 0 . On the other hand if $i=j$

$$
E\left[a_{i}^{2}\left(X_{1}, \ldots, X_{k-1}\right) X_{i}^{2}\right]=E\left[a_{i}\left(X_{1}, \ldots, X_{i-1}\right)^{2}\right]
$$

resulting for $n>m$,

$$
E\left[\left|S_{n}-S_{m}\right|^{2}\right]=\sum_{j=m+1}^{n} E\left[a_{j}\left(X_{1}, \ldots, X_{i-1}\right)^{2}\right]
$$

proving the convergence of S_{n} in $L_{2}(P)$.
Actually one does not need even independence of $\left\{X_{j}\right\}$. If

$$
E\left[X_{j} \mid X_{1}, \ldots, X_{j-1}\right]=0
$$

and

$$
E\left[X_{j}^{2} \mid X_{1}, \ldots, X_{j-1}\right]=\sigma_{j}^{2}\left(X_{1}, \ldots, X_{k-1}\right)
$$

then $E\left[S_{n}\right]=0$ and

$$
E\left[\left|S_{n}-S_{m}\right|^{2}\right]=\sum_{j=m+1}^{n} E\left[a_{j}^{2}\left(X_{1}, \ldots, X_{j-1}\right)^{2} \sigma_{j}^{2}\left(X_{1}, \ldots, X_{j-1}\right)\right]
$$

and the convergence of

$$
\sum_{j=1}^{\infty} E\left[a_{j}^{2}\left(X_{1}, \ldots, X_{j-1}\right)^{2} \sigma_{j}^{2}\left(X_{1}, \ldots, X_{j-1}\right)\right]
$$

implies the existence of the limit S of S_{n} in $L_{2}(P)$.
All of this leads to the following definition. We have a probability space (Ω, \mathcal{F}, P) and a family of sub σ-fields \mathcal{F}_{i} with $\mathcal{F}_{i-1} \subset \mathcal{F}_{i}$ for every i. A sequence $X_{i}(\omega)$ of random variables is called a (square integrable) martingale with respect to $\left(\Omega,\left\{\mathcal{F}_{i}\right\}, P\right)$ if

1) X_{i} is \mathcal{F}_{i} measurable for every $i \geq 0$.
2) For every $i \geq 1, E\left[X_{i}-X_{i-1} \mid \mathcal{F}_{i-1}\right]=0$
3) $E\left[X_{i}^{2}\right]<\infty$ for $i \geq 0$.

If we dente by $\sigma_{i}^{2}(\omega)=E\left[\left(X_{i}-X_{i-1}\right)^{2} \mid \mathcal{F}_{i-1}\right]$ then $E\left[\left(X_{i}-X_{i-1}\right)^{2}\right]=E\left[\sigma_{i}^{2}(\omega)\right]<\infty$. If X_{i} is a (square integrable) martingale then $\xi_{i}=X_{i}-X_{i-1}$ is called a (square integrable) martingale difference. It has the properties

1) ξ_{i} is \mathcal{F}_{i} measurable for every $i \geq 1$.
2) For every $\left.i \geq 1, E\left[\xi_{i}\right] \mid \mathcal{F}_{i-1}\right]=0$
3) $E\left[\xi_{i}^{2}\right]<\infty$ for $i \geq 1$.
X_{0} is often 0 or a constant. It does not have to be. It is \mathcal{F}_{0} measurable and for $n \geq 1$,

$$
X_{n}=X_{0}+\sum_{i=1}^{n} \xi_{i}
$$

It is now an easy calculation to conclude that

$$
E\left[X_{n}^{2}\right]=E\left[X_{0}\right]^{2}+\sum_{j=1}^{n} E\left[\xi_{j}^{2}\right]
$$

If we dente by $\sigma_{i}^{2}(\omega)=E\left[\xi_{i}^{2} \mid \mathcal{F}_{i-1}\right]$ then $E\left[\xi_{i}^{2}\right]=E\left[\sigma_{i}^{2}(\omega)\right]<\infty$. If we take a sequence of bounded functions $a_{i}(\omega)$ that are \mathcal{F}_{i-1} measurable, then we can define

$$
Y_{n}=\sum_{i=1}^{n} a_{i}(\omega) \xi_{i}
$$

It is easy to see that Y_{n} is again a martingale and $E\left[\left(Y_{i}-Y_{i-1}\right)^{2} \mid \mathcal{F}_{i-1}\right]=a_{i}^{2}(\omega) \sigma_{i}^{2}(\omega)$. One just needs to note that if $\left\{\xi_{i}\right\}$ is a sequence of martingale differences and a_{i} is \mathcal{F}_{i-1} measurable, then $\eta_{i}=a_{i} \xi_{i}$ is again a martingale difference and $E\left[\eta_{i}^{2} \mid \mathcal{F}_{i-1}\right]=a_{i}^{2}(\omega) \sigma_{i}^{2}(\omega)$. $\left\{Y_{n}\right\}$ is called a martingale transform of X_{n} and one writes

$$
\left(Y_{n+1}-Y_{n}\right)=a_{n}\left(X_{n+1}-X_{n}\right)
$$

or

$$
\nabla Y_{n}=a_{n} \nabla X_{n}
$$

Notice that in the definition of the increment ∇X_{n} and ∇Y_{n} the increments stick out. This is important because otherwise the cross terms in the calculation of the expectation of the square of the sum will not equal 0 . Martingale transforms generates new martingale from a given martingale. There are obvious identities.

$$
\nabla Y_{n}=a_{n} \nabla X_{n}, \nabla Z_{n}=b_{n} \nabla Y_{n} \Rightarrow \nabla Z_{n}=a_{n} b_{n} \nabla X_{n}
$$

leading to the inversion rule

$$
\nabla Y_{n}=a_{n} \nabla X_{n} \Rightarrow \nabla X_{n}=b_{n} \nabla Y_{n}
$$

with $b_{n}=\left[a_{n}\right]^{-1}$.
One should think of martingale differences ξ_{i} as possible returns on a standard bet of one unit at the i-th round of a game. There is some randomness. The game is "fair" if the expected return is 0 no matter what the past history through $i-1$ rounds. \mathcal{F}_{i-i} represents historical information through $i-1$ rounds is. One should think of a_{i} as the leverage, with negative values representing short positions or betting in the opposite direction. The dependence on ω is the strategy that can only be based on information available through the previous round. No matter what the strategy is for the leverage, the game is always "fair". You can not find a winning (or losing) strategy in a "fair" game.

Stopping Times. A special set of choices for $a_{i}(\omega)$ is a decision about when to stop. $\tau(\omega)$ is a non-negative integer valued function on Ω and $a_{i}(\omega)$ is defined by

$$
a_{i}(\omega)=\left\{\begin{array}{l}
1 \text { for } i<\tau(\omega) \\
0 \text { for } i \geq \tau(\omega)
\end{array}\right.
$$

The condition that $a_{i}(\omega)$ is \mathcal{F}_{i-1} measurable leads to, for $i \geq 1$,

$$
\{\omega: \tau(\omega) \leq i\} \in \mathcal{F}_{i}
$$

You can not decide to "stop" after looking into the "future". In particular quitting while ahead can not be a winning strategy.

A paradox. What if in a game of even odds you double your bet every time you lose. If there is any chance of winning at all, sooner or later you will win a round. You will exit with exactly $\$ 1$ in winnings. This is indeed a stopping time. But this requires ability to play as many games as it takes. Even in a fair game you can have a long run of bad luck and you can not really afford it. You wont live that long or before that you will exceed you credit limit. If you put a limit on the number of games to be played, say N, then with probability 2^{-N} you will have a big loss of $\$\left(2^{N}-1\right)$ and with probability $1-2^{-N}$ a gain of $\$ 1$. Technically, in order to show that the game remains "fair" , i.e $E\left[X_{\tau}\right]=E\left[X_{0}\right]$, one has to assume that stopping times τ is bounded i.e. $\tau(\omega) \leq T$ for some non-random T. There is maximum number of rounds before which one has to stop.

With this provision a proof can be made. Let $a_{i}(\omega)=1$ if $\tau(\omega) \geq i$ and 0 otherwise. The martingale transform

$$
\nabla Y_{n}=a_{n} \nabla X_{n}
$$

yields

$$
Y_{n}=X_{\tau}, \quad \text { if } \quad n \geq \tau
$$

In particular $E\left[X_{\tau}-X_{0}\right]=E\left[Y_{T}-Y_{0}\right]=0$. Actually

$$
Y_{n}=X_{\tau \wedge n}
$$

and we have proved
Theorem. Let X_{n} be a martingale and $\tau(\omega)$ a stopping time. Then $Y_{n}=X_{\tau \wedge n}$ is again a martingale.

Remark. If τ is unbounded, then to show that $E\left[X_{\tau}-X_{0}\right]=0$ one has to let $n \rightarrow \infty$ in $E\left[X_{\tau \wedge n}-X_{0}\right]=0$. This requires uniform integrability assumptions on X_{n}. In particular if $\sup _{0 \leq n \leq \tau}\left|X_{n}\right| \leq C$, for some constant C, there is no difficulty.

There is a natural σ-field \mathcal{F}_{τ} associated with a stopping time. Intuitively this is all the information one has gathered up to the stopping time. For example if a martingale X_{n} is stopped when it reaches a level a or above, i.e $\tau=\left\{\inf n: X_{n} \geq a\right\}$, then the set

$$
A=\left\{\omega: X_{n} \text { goes below level } b \text { before going above level } a\right\}
$$

will be in \mathcal{F}_{τ} but not $\left\{\omega: X_{n} \geq a\right\}$ unless we know for sure that $\tau \geq a$. Technically
Definition. A set $A \in \mathcal{F}_{\tau}$ if for every k

$$
A \cap\{\tau \leq k\} \in \mathcal{F}_{k}
$$

Equivalently one can demand that for every k

$$
A \cap\{\tau=k\} \in \mathcal{F}_{k}
$$

The following facts are easy to verify. \mathcal{F}_{τ} is a σ-field for any stopping time τ. If $\tau=\ell$ is a constant then $\mathcal{F}_{\tau}=\mathcal{F}_{\ell}$. If $\tau_{1} \leq \tau_{2}$ then $\mathcal{F}_{\tau_{1}} \subset \mathcal{F}_{\tau_{2}}$. If τ_{1}, τ_{2} are stopping times so are $\tau_{1} \wedge \tau_{2}, \tau_{1} \vee \tau_{2}$. If τ is a stopping time and $f(t)$ is an increasing function of t satisfying $f(t) \geq t$, then $f(\tau)$ is a stopping time.

Theorem (Doob's stopping theorem). If $\tau_{1} \leq \tau_{2} \leq T$ are two bounded stopping times then

$$
E\left[X_{\tau_{2}} \mid \mathcal{F}_{\tau_{1}}\right]=X_{\tau_{1}}
$$

It is enough to prove that for any stopping time bounded by T

$$
E\left[X_{T} \mid \mathcal{F}_{\tau}\right]=X_{\tau}
$$

Let $A \in \mathcal{F}_{\tau}$. We need to show

$$
\int_{A} X_{T} d P=\int_{A} X_{\tau} d P
$$

It suffices to show that for each k

$$
\int_{A \cap\{\tau=k\}} X_{T} d P=\int_{A \cap\{\tau=k\}} X_{\tau} d P=\int_{A \cap\{\tau=k\}} X_{k} d P
$$

we can then sum over k. But $A \cap\{\tau=k\} \in \mathcal{F}_{k}$ and for $B \in \mathcal{F}_{k}$, that

$$
\int_{B} X_{T} d P=\int_{B} X_{k} d P
$$

follows from $E\left[X_{T} \mid \mathcal{F}_{k}\right]=X_{k}$.
Remark. Although we have worked with square integrable martingales the definition of a martingale and Doob's stopping theorem only needs the existence of the mean. Just integrability of $\left|X_{n}\right|$ is all that is needed for the definition to make sense. Of course any calculation that involves the second moment needs the variances to be finite.

