
3. Martingales I.

Let us start with a sequence {Xi} of independent random variables with E[Xi] = 0 and
E[X2

i ] = 1. We saw earlier that for a sequence {aj} of constants

S =

∞
∑

i=1

aiXi

will converge with probability 1 and in mean square provided

∑

j

a2
j < ∞

We shall now see that actually aj(X1, X2, . . . , Xj−1) can be a function of X1, . . . , Xj−1. If
they satisfy

∑

j

E[aj(X1, . . . , Xj−1)
2] < ∞

then the series

S =

∞
∑

j=1

aj(X1, X2, . . . , Xj−1)Xj

will converge. Let us show for the present convergence of

Sn =

n
∑

j=1

aj(X1, X2, . . . , Xj−1)Xj

to S in L2(P ). This requires us to show that

lim
n→∞

m→∞

E[|Sn − Sm|2] = 0.

A straight forward computation of

E
[

[

n
∑

j=m+1

aj(X1, . . . , Xj−1) Xj]
2
]

shows that the non-diagonal terms are 0. If i 6= j, either Xi or Xj sticks out and makes
the expectation 0. On the other hand if i = j

E[a2
i (X1, . . . , Xk−1)X

2
i ] = E[ai(X1, . . . , Xi−1)

2]

resulting for n > m,

E[|Sn − Sm|2] =

n
∑

j=m+1

E[aj(X1, . . . , Xi−1)
2]
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proving the convergence of Sn in L2(P ).

Actually one does not need even independence of {Xj}. If

E[Xj|X1, . . . , Xj−1] = 0

and
E[X2

j |X1, . . . , Xj−1] = σ2
j (X1, . . . , Xk−1)

then E[Sn] = 0 and

E[|Sn − Sm|2] =
n

∑

j=m+1

E[a2
j(X1, . . . , Xj−1)

2 σ2
j (X1, . . . , Xj−1)]

and the convergence of

∞
∑

j=1

E[a2
j(X1, . . . , Xj−1)

2 σ2
j (X1, . . . , Xj−1)]

implies the existence of the limit S of Sn in L2(P ).

All of this leads to the following definition. We have a probability space (Ω,F , P ) and a
family of sub σ-fields Fi with Fi−1 ⊂ Fi for every i. A sequence Xi(ω) of random variables
is called a (square integrable) martingale with respect to (Ω, {Fi}, P ) if

1) Xi is Fi measurable for every i ≥ 0.

2) For every i ≥ 1, E[Xi − Xi−1|Fi−1] = 0

3) E[X2
i ] < ∞ for i ≥ 0.

If we dente by σ2
i (ω) = E[(Xi − Xi−1)

2|Fi−1] then E[(Xi − Xi−1)
2] = E[σ2

i (ω)] < ∞. If
Xi is a (square integrable) martingale then ξi = Xi − Xi−1 is called a (square integrable)
martingale difference. It has the properties

1) ξi is Fi measurable for every i ≥ 1.

2) For every i ≥ 1, E[ξi]|Fi−1] = 0

3) E[ξ2
i ] < ∞ for i ≥ 1.

X0 is often 0 or a constant. It does not have to be. It is F0 measurable and for n ≥ 1,

Xn = X0 +

n
∑

i=1

ξi

It is now an easy calculation to conclude that

E[X2
n] = E[X0]

2 +

n
∑

j=1

E[ξ2
j ]
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If we dente by σ2
i (ω) = E[ξ2

i |Fi−1] then E[ξ2
i ] = E[σ2

i (ω)] < ∞. If we take a sequence of
bounded functions ai(ω) that are Fi−1 measurable, then we can define

Yn =

n
∑

i=1

ai(ω)ξi

It is easy to see that Yn is again a martingale and E[(Yi − Yi−1)
2|Fi−1] = a2

i (ω)σ2
i (ω).

One just needs to note that if {ξi} is a sequence of martingale differences and ai is Fi−1

measurable, then ηi = aiξi is again a martingale difference and E[η2
i |Fi−1] = a2

i (ω)σ2
i (ω).

{Yn} is called a martingale transform of Xn and one writes

(Yn+1 − Yn) = an(Xn+1 − Xn)

or
∇Yn = an∇Xn

Notice that in the definition of the increment ∇Xn and ∇Yn the increments stick out. This
is important because otherwise the cross terms in the calculation of the expectation of the
square of the sum will not equal 0. Martingale transforms generates new martingale from
a given martingale. There are obvious identities.

∇Yn = an∇Xn, ∇Zn = bn∇Yn ⇒ ∇Zn = anbn∇Xn

leading to the inversion rule

∇Yn = an∇Xn ⇒ ∇Xn = bn∇Yn

with bn = [an]−1.

One should think of martingale differences ξi as possible returns on a standard bet of one
unit at the i-th round of a game. There is some randomness. The game is ”fair” if the
expected return is 0 no matter what the past history through i−1 rounds. Fi−i represents
historical information through i − 1 rounds is. One should think of ai as the leverage,
with negative values representing short positions or betting in the opposite direction. The
dependence on ω is the strategy that can only be based on information available through
the previous round. No matter what the strategy is for the leverage, the game is always
”fair”. You can not find a winning (or losing ) strategy in a ”fair” game.

Stopping Times. A special set of choices for ai(ω) is a decision about when to stop.
τ(ω) is a non-negative integer valued function on Ω and ai(ω) is defined by

ai(ω) =

{

1 for i < τ(ω)
0 for i ≥ τ(ω)

The condition that ai(ω) is Fi−1 measurable leads to, for i ≥ 1,

{ω : τ(ω) ≤ i} ∈ Fi

3



You can not decide to ”stop” after looking into the ”future”. In particular quitting while
ahead can not be a winning strategy.

A paradox. What if in a game of even odds you double your bet every time you lose. If
there is any chance of winning at all, sooner or later you will win a round. You will exit
with exactly $1 in winnings. This is indeed a stopping time. But this requires ability to
play as many games as it takes. Even in a fair game you can have a long run of bad luck
and you can not really afford it. You wont live that long or before that you will exceed
you credit limit. If you put a limit on the number of games to be played, say N , then with
probability 2−N you will have a big loss of $(2N − 1) and with probability 1− 2−N a gain
of $1. Technically, in order to show that the game remains ”fair” , i.e E[Xτ ] = E[X0], one
has to assume that stopping times τ is bounded i.e. τ(ω) ≤ T for some non-random T .
There is maximum number of rounds before which one has to stop.

With this provision a proof can be made. Let ai(ω) = 1 if τ(ω) ≥ i and 0 otherwise. The
martingale transform

∇Yn = an∇Xn

yields
Yn = Xτ , if n ≥ τ

In particular E[Xτ − X0] = E[YT − Y0] = 0. Actually

Yn = Xτ∧n

and we have proved

Theorem. Let Xn be a martingale and τ(ω) a stopping time. Then Yn = Xτ∧n is again
a martingale.

Remark. If τ is unbounded, then to show that E[Xτ − X0] = 0 one has to let n → ∞ in
E[Xτ∧n − X0] = 0. This requires uniform integrability assumptions on Xn. In particular
if sup0≤n≤τ |Xn| ≤ C, for some constant C, there is no difficulty.

There is a natural σ-field Fτ associated with a stopping time. Intuitively this is all the
information one has gathered up to the stopping time. For example if a martingale Xn is
stopped when it reaches a level a or above , i.e τ = {inf n : Xn ≥ a}, then the set

A = {ω : Xn goes below level b before going above level a}

will be in Fτ but not {ω : Xn ≥ a} unless we know for sure that τ ≥ a. Technically

Definition. A set A ∈ Fτ if for every k

A ∩ {τ ≤ k} ∈ Fk

Equivalently one can demand that for every k

A ∩ {τ = k} ∈ Fk
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The following facts are easy to verify. Fτ is a σ-field for any stopping time τ . If τ = ℓ is
a constant then Fτ = Fℓ. If τ1 ≤ τ2 then Fτ1

⊂ Fτ2
. If τ1, τ2 are stopping times so are

τ1 ∧ τ2, τ1 ∨ τ2. If τ is a stopping time and f(t) is an increasing function of t satisfying
f(t) ≥ t, then f(τ) is a stopping time.

Theorem (Doob’s stopping theorem). If τ1 ≤ τ2 ≤ T are two bounded stopping times
then

E[Xτ2
|Fτ1

] = Xτ1

It is enough to prove that for any stopping time bounded by T

E[XT |Fτ ] = Xτ

Let A ∈ Fτ . We need to show

∫

A

XT dP =

∫

A

XτdP

It suffices to show that for each k

∫

A∩{τ=k}

XT dP =

∫

A∩{τ=k}

XτdP =

∫

A∩{τ=k}

XkdP

we can then sum over k. But A ∩ {τ = k} ∈ Fk and for B ∈ Fk, that

∫

B

XT dP =

∫

B

XkdP

follows from E[XT |Fk] = Xk.

Remark. Although we have worked with square integrable martingales the definition of
a martingale and Doob’s stopping theorem only needs the existence of the mean. Just
integrability of |Xn| is all that is needed for the definition to make sense. Of course any
calculation that involves the second moment needs the variances to be finite.
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