2. Independent random variables.

The Law of large Numbers. If $\left\{X_{i}: i \geq 1\right\}$ are a sequence of independent identically distributed random variables (on some (Ω, \mathcal{F}, P)) with $E\left[X_{i}\right]=m$, then

$$
P\left[\omega: \lim _{n \rightarrow \infty} \frac{1}{n}\left[X_{1}(\omega)+\cdots+X_{n}(\omega)\right]=m\right]=1
$$

This is the strong law of large numbers. The weak law, which is naturally weaker than the strong law, asserts that for any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left[\omega:\left|\frac{1}{n}\left[X_{1}(\omega)+\cdots+X_{n}(\omega)\right]-m\right| \geq \epsilon\right]=0
$$

The strong law requires the existence of the mean, i.e $\left\{X_{i}\right\}$ have to be integrable. On the other hand the weak law can be valid some times even if we can only have the mean defined as

$$
m=\lim _{a \rightarrow \infty} \int_{-a}^{a} x d F(x)
$$

where F is the common distribution of $\left\{X_{i}\right\}$.
The Central Limit Theorem. If $\left\{X_{i}\right\}$ are independent, identically distributed and have mean 0 and variance σ^{2}, then the distribution of $Z_{n}=\frac{1}{\sqrt{n}}\left[X_{1}+\cdots+X_{n}\right]$, approaches the normal distribution with mean, i.e.

$$
\lim _{n \rightarrow \infty} P\left[\frac{1}{\sqrt{n}}\left[X_{1}+\cdots+X_{n}\right] \leq x\right]=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{x} e^{-\frac{y^{2}}{2 \sigma^{2}}} d y
$$

The central limit theorem is valid also if $\left\{X_{i}\right\}$ are not identically distributed, but X_{i} has mean 0 and variance σ_{i}^{2}. Then with $Z_{n}=\frac{1}{s_{n}}\left[X_{1}+\cdots+X_{n}\right]$, where $s_{n}^{2}=\sum_{i=1}^{n} \sigma_{i}^{2}$, we have

$$
\lim _{n \rightarrow \infty} P\left[Z_{n} \leq x\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{y^{2}}{2}} d y
$$

provided $s_{n} \rightarrow \infty$ and some additional condition known as Lindeberg's condition is satisfied. It is that, for any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{s_{n}^{2}} \sum_{i=1}^{n} \int_{|x| \geq \epsilon s_{n}} x^{2} d F_{i}(x)=0
$$

where F_{i} is the distribution of X_{i}.
Kolmogorov's Two Series Theorem. Let $\left\{X_{i}\right\}$ be a sequence of independent random variables uniformly bounded by a constant C with X_{i} having mean 0 and variance σ_{i}^{2}. Then the necessary and sufficient condition for the convergence with probability 1 of the series

$$
S=\sum_{i=1}^{\infty} X_{i}
$$

is

$$
\sum_{i=1}^{\infty} \sigma_{i}^{2}<\infty
$$

The sufficiency part of the proof depends on the important inequality known as Kolmogorov's inequality.
Kolmogorov's Inequality. Let $\left\{X_{i}\right\}$ be indpendent random variables with mean 0 and variance σ_{i}^{2}. Then

$$
P\left[\sup _{1 \leq j \leq n}\left|X_{1}+X_{2}+\cdots+X_{j}\right| \geq \ell\right] \leq \frac{1}{\ell^{2}} \sum_{I=1}^{n} \sigma_{i}^{2}
$$

Tchebecheff's inequality gives

$$
P\left[\left|X_{1}+X_{2}+\cdots+X_{j}\right| \geq \ell\right] \leq \frac{1}{\ell^{2}} \sum_{I=1}^{j} \sigma_{i}^{2}
$$

Naive calculation will yield

$$
P\left[\sup _{1 \leq j \leq n}\left|X_{1}+X_{2}+\cdots+X_{j}\right| \geq \ell\right] \leq \frac{1}{\ell^{2}} \sum_{j=1}^{n} \sum_{I=1}^{j} \sigma_{i}^{2}
$$

which is not good enough. Let us define

$$
E_{j}=\left\{\omega:\left|X_{1}+X_{2}+\cdots+X_{k}\right|<\ell \quad \text { for } k \leq(j-1), \quad\left|X_{1}+X_{2}+\cdots+X_{j}\right| \geq \ell\right\}
$$

We are interested in estimating

$$
P(E)=\sum_{j=1}^{n} P\left(E_{j}\right)
$$

Denoting by $S_{j}=\sum_{i=1}^{j} X_{i}$,

$$
\begin{aligned}
\int_{E_{j}} S_{n}^{2} d P & =\int_{E_{j}}\left(S_{j}+\left(S_{n}-S_{j}\right)\right)^{2} d P \\
& =\int_{E_{j}}\left[S_{j}^{2}+2 S_{j}\left(S_{n}-S_{j}\right)+\left(S_{n}-S_{j}\right)^{2}\right] d P \\
& \geq \int_{E_{j}} S_{j}^{2} d P \geq \ell^{2} P\left(E_{j}\right)
\end{aligned}
$$

The cross term is 0 because E_{j}, S_{j} are independent of $S_{n}-S_{j}$. Because E_{j} are disjoint and their union is E, summing over $j=1,2, \ldots, n$, we get

$$
s_{n}^{2} \geq \int_{E} s_{n}^{2} d P \geq \ell^{2} P(E)
$$

This allows the tail of the series

$$
T_{n}=\sup _{j \geq n}\left|S_{j}-S_{n}\right|
$$

to be estimated by

$$
P\left[T_{n} \geq \epsilon\right] \leq \frac{1}{\epsilon^{2}} \sum_{j=n+1}^{\infty} \sigma_{j}^{2}
$$

proving $T_{n} \rightarrow 0$ with probability 1 . The converse depends on an inequality as well. Assume $\lim \sup \left|S_{n}\right|<\infty$ with positive probbaility. Let

$$
F_{n}=\left\{\omega: \sup _{1 \leq j \leq n}\left|S_{j}\right| \leq \ell\right\}
$$

so that $E_{n+1}=F_{n}-F_{n+1}$ are disjoint. Then there is an ℓ such that $P\left(F_{n}\right) \geq \delta>0$ for all

$$
\begin{aligned}
\int_{F_{n+1}} S_{n+1}^{2} d P+\int_{E_{n+1}} S_{n+1}^{2} d P-\int_{F_{n}} S_{n}^{2} d P & =\int_{F_{n}} S_{n+1}^{2} d P-\int_{F_{n}} S_{n}^{2} d P \\
& =\int_{F_{n}}\left[2 X_{n+1} S_{n}+X_{n+1}^{2}\right] d P \\
& \geq \int_{F_{n}} X_{n+1}^{2} d P \\
& =P\left(F_{n}\right) \sigma_{n+1}^{2} \\
& \geq \delta \sigma_{n+1}^{2}
\end{aligned}
$$

On the other hand $\left|S_{n+1}\right| \leq C+\ell$ on E_{n+1}. Therefore

$$
\sigma_{n+1}^{2} \leq \frac{1}{\delta}\left[(C+\ell)^{2} P\left(E_{n+1}\right)+\int_{E_{n+1}} S_{n+1}^{2} d P-\int_{F_{n}} S_{n}^{2} d P\right]
$$

And the telescoping sum

$$
\sum\left[\int_{E_{n+1}} S_{n+1}^{2} d P-\int_{F_{n}} S_{n}^{2} d P\right]
$$

is bounded by ℓ^{2}. Providing the estimate

$$
\sum_{j} \sigma_{j}^{2} \leq \frac{1}{\delta}\left[(C+\ell)^{2}+\ell^{2}\right]
$$

Actually we have shown some thing stronger. If

$$
\sum_{j} \sigma_{j}^{2}=+\infty
$$

then

$$
P\left[\limsup _{n \rightarrow \infty}\left|S_{n}\right|=\infty\right]=1
$$

An easy corollary is that if $\left\{X_{i}\right\}$ are independent random variables with $E\left[X_{i}\right]=0$ and $E\left[X_{i}^{2}\right]=\sigma_{i}^{2}$ then for any sequence of constants $\left\{a_{j}\right\}$ satisfying

$$
\sum_{j} \sigma_{j}^{2} a_{j}^{2}<\infty
$$

the series

$$
S=\sum_{j} a_{j} X_{j}
$$

will converge with probability 1 ,

