
2. Independent random variables.

The Law of large Numbers. If {Xi : i ≥ 1} are a sequence of independent identically
distributed random variables (on some (Ω,F , P )) with E[Xi] = m, then

P
[

ω : lim
n→∞

1

n
[X1(ω) + · · ·+ Xn(ω)] = m

]

= 1

This is the strong law of large numbers. The weak law, which is naturally weaker than the
strong law, asserts that for any ǫ > 0,

lim
n→∞

P
[

ω :
∣

∣

1

n
[X1(ω) + · · · + Xn(ω)] − m

∣

∣ ≥ ǫ
]

= 0

The strong law requires the existence of the mean, i.e {Xi} have to be integrable. On
the other hand the weak law can be valid some times even if we can only have the mean
defined as

m = lim
a→∞

∫ a

−a

x dF (x)

where F is the common distribution of {Xi}.
The Central Limit Theorem. If {Xi} are independent, identically distributed and have
mean 0 and variance σ2, then the distribution of Zn = 1√

n
[X1 + · · ·+ Xn], approaches the

normal distribution with mean , i.e.

lim
n→∞

P [
1√
n

[X1 + · · ·+ Xn] ≤ x] =
1√
2πσ

∫ x

−∞
e
− y2

2σ2 dy

The central limit theorem is valid also if {Xi} are not identically distributed, but Xi has
mean 0 and variance σ2

i . Then with Zn = 1

sn
[X1 + · · · + Xn], where s2

n =
∑n

i=1
σ2

i , we
have

lim
n→∞

P [Zn ≤ x] =
1√
2π

∫ x

−∞
e−

y2

2 dy

provided sn → ∞ and some additional condition known as Lindeberg’s condition is satis-
fied. It is that, for any ǫ > 0,

lim
n→∞

1

s2
n

n
∑

i=1

∫

|x|≥ǫsn

x2dFi(x) = 0

where Fi is the distribution of Xi.

Kolmogorov’s Two Series Theorem. Let {Xi} be a sequence of independent random
variables uniformly bounded by a constant C with Xi having mean 0 and variance σ2

i .
Then the necessary and sufficient condition for the convergence with probability 1 of the
series

S =
∞
∑

i=1

Xi

1



is ∞
∑

i=1

σ2
i < ∞

The sufficiency part of the proof depends on the important inequality known as Kol-
mogorov’s inequality.

Kolmogorov’s Inequality. Let {Xi} be indpendent random variables with mean 0 and
variance σ2

i . Then

P [ sup
1≤j≤n

|X1 + X2 + · · · + Xj | ≥ ℓ] ≤ 1

ℓ2

n
∑

I=1

σ2
i

Tchebecheff’s inequality gives

P [|X1 + X2 + · · ·+ Xj| ≥ ℓ] ≤ 1

ℓ2

j
∑

I=1

σ2
i

Naive calculation will yield

P [ sup
1≤j≤n

|X1 + X2 + · · ·+ Xj | ≥ ℓ] ≤ 1

ℓ2

n
∑

j=1

j
∑

I=1

σ2
i

which is not good enough. Let us define

Ej = {ω : |X1 + X2 + · · ·+ Xk| < ℓ for k ≤ (j − 1), |X1 + X2 + · · · + Xj | ≥ ℓ}

We are interested in estimating

P (E) =

n
∑

j=1

P (Ej)

Denoting by Sj =
∑j

i=1
Xi,

∫

Ej

S2
ndP =

∫

Ej

(Sj + (Sn − Sj))
2dP

=

∫

Ej

[S2
j + 2Sj(Sn − Sj) + (Sn − Sj)

2] dP

≥
∫

Ej

S2
j dP ≥ ℓ2P (Ej)

The cross term is 0 because Ej, Sj are independent of Sn − Sj . Because Ej are disjoint
and their union is E, summing over j = 1, 2, . . . , n, we get

s2
n ≥

∫

E

s2
ndP ≥ ℓ2P (E)
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This allows the tail of the series

Tn = sup
j≥n

|Sj − Sn|

to be estimated by

P [Tn ≥ ǫ] ≤ 1

ǫ2

∞
∑

j=n+1

σ2
j

proving Tn → 0 with probability 1. The converse depends on an inequality as well. Assume
lim sup |Sn| < ∞ with positive probbaility. Let

Fn = {ω : sup
1≤j≤n

|Sj | ≤ ℓ}

so that En+1 = Fn −Fn+1 are disjoint. Then there is an ℓ such that P (Fn) ≥ δ > 0 for all

∫

Fn+1

S2
n+1dP +

∫

En+1

S2
n+1dP −

∫

Fn

S2
ndP =

∫

Fn

S2
n+1dP −

∫

Fn

S2
ndP

=

∫

Fn

[2Xn+1Sn + X2
n+1]dP

≥
∫

Fn

X2
n+1 dP

= P (Fn)σ2
n+1

≥ δ σ2
n+1

On the other hand |Sn+1| ≤ C + ℓ on En+1. Therefore

σ2
n+1 ≤ 1

δ
[(C + ℓ)2P (En+1) +

∫

En+1

S2
n+1dP −

∫

Fn

S2
ndP ]

And the telescoping sum

∑

[

∫

En+1

S2
n+1dP −

∫

Fn

S2
ndP ]

is bounded by ℓ2. Providing the estimate

∑

j

σ2
j ≤ 1

δ
[(C + ℓ)2 + ℓ2]

Actually we have shown some thing stronger. If

∑

j

σ2
j = +∞

3



then
P [lim sup

n→∞
|Sn| = ∞] = 1

An easy corollary is that if {Xi} are independent random variables with E[Xi] = 0 and
E[X2

i ] = σ2
i then for any sequence of constants {aj} satisfying

∑

j

σ2
j a2

j < ∞

the series
S =

∑

j

ajXj

will converge with probability 1,
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