
1. Measure Theory.

The question that is always asked in a course like this is how much measure theory do we
need. Not much. Measure theory is mostly language. There are a few technical facts and
we will deal with them as we need them. Right now we will talk about the language.

The (sample) space. This is fairly arbitrary. One visualizes a random phenomenon and
every possible outcome is a distinct point of our space. This should be large enough to
accommodate the complexity of the model we have, but small enough that we can work
with it. Most of the time the choice is natural. If we want to model the results of a single
toss of a coin the space Ω will have just two points in it. T and H. If the coin is tossed
three times the space will be the eight words of length three with letters T , H. If we want
to model an unending stream of tosses then Ω will be the space of all infinite sequences
consisting of H or T .

Events. These are questions that can be asked about the outcome that can be answered
by ”yes” or ”no”. They correspond to subsets of Ω. The set corresponds to outcomes that
result in the answer ”yes”. Complement is negation while union is ”or” and intersection
is ”and”. Not all subsets of Ω need to be events. Some are. They constitute a privileged
collection F . Satisfies some properties. Contains the whole space Ω and the empty set
∅ and is closed under complementation and finite or countable unions and intersections.
Such collections are called σ-fields.

Measure or Probability. Probability P is a set-function with values P (A) defined for
sets A ∈ F . A model is specified by assigning P (A) for events A. It has some properties.
0 ≤ P (A) ≤ 1. P (Ω) = 1. P (∅) = 0. Additive for (countable) union of disjoint sets.

All the technical aspects have to do with countable additivity. The hard part is the
construction such P . There are theorems that do that. Typically they show that given
a P on a class A of subsets of Ω with certain properties then it extends uniquely as a
countably additive P to the σ-field generated by A.

Example. Given a non-decreasing right continuous function F (x) on the real line R

such that F (−∞) = 0 and F (∞) = 1, we can define for an interval A = (a, b], P (A) =
F (b) − F (a). This extends uniquely as a measure to the Borel σ-field, one generated by
intervals. The function

F (x) =

{

0 for x ≤ 0
x for 0 ≤ x ≤ 1
1 for x ≥ 1

yields the Lebesgue measure on [0, 1].

Random Variable. This is just a function Ω → R. X = X(ω) associates a real value to
every outcome ω ∈ Ω in our sample space. One assumes that this is measurable, i.e for
any interval (a, b] the inverse image X−1[(a, b]] = {ω : X(ω) ∈ (a, b]} is in F . This is so
we can define

F (b) = P (X−1[(−∞, b]])

and get a measure on R which will be the distribution of X under our model P .
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Expectations and Integrals. Given a random variable f : Ω → R its expectation or
integrals written as

∫

f(ω)dP is defined for f(ω) = 1A(ω) as P (A) and then extended
by linearity to simple functions and by a limiting procedure to all bounded measurable
functions and then to absolutely integrable functions. If a function is badly unbounded
the integral may not converge. But if it does, it does so absolutely. For non-negative
measurable functions

∫

f(ω) dP = sup
g:0≤g≤f

g bounded

∫

g(ω) dP

And for general f = f+ − f−,

∫

fdP =

∫

f+ dP −

∫

f− dP

New measures from old. If f is non-negative integrable function with
∫

f(ω)dP = 1
then

Q(A) =

∫

A

f(ω)dP =

∫

1A(ω)f(ω)dP

defines a new probability measure. f is called the density or Radon Nikodym derivative
of Q with respect to P . In symbols f = dQ

dP
. Such Q’s are characterized by the property

Q(A) = 0 when ever P (A) = 0. A Q that satisfies the above condition is said to be
absolutely continuous with respect to P . The Radon-Nikodym theorem proves that for
such a Q, f exists and is unique.

It is useful to imagine the Radon-Nikodym derivative as

lim
A↓{ω}

Q(A)

P (A)

where {ω} is the single point set consisting of ω. In general P ({ω}) = 0. Otherwise f(ω)

would be just Q({ω})
P ({ω}) .

Information and σ-fields. One can think abstractly of ”information” as all possible
questions for which one can answer yes or no. Then one can see that natural candidates
are σ-fields. If F represents complete information in the model, ”partial information”
corresponds to various sub-σ-fields. With the trivial σ-field {Ω, ∅} representing no infor-
mation. If the information is just answer to one question, that corresponds to the σ−field
{∅, A, Ac, Ω}. Corresponds to a partition of Ω into A, Ac. One can think more generally
of partitioning Ω into disjoints sets A1, A2, . . . , An with ∪jAj = Ω. This corresponds to
the σ-field consisting of sets that are finite unions of some of the Ai’s. Think of Ai as
atoms that we cannot split. A general sub-σ-field is essentially a continuous version of
this. Think of Ω as R2 . If we only have information about the first coordinate then the
partition is ω = ∪x{Lx} where each atom is a line parallel to the y-axis.

Conditional Expectation. An important notion is that of conditional expectation.
Expectation is the average and it is what we ”expect”. If we have partial information then
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our ”expectation” will change. Imagine the information we have is given by a partition
P = {A1, · · · , An} of Ω. Consider the random variable X(ω) = i on Ai. Then the
conditional expectation of f given P is

g(ω) = E[f(ω)|P] = gi = E[f(ω)|X(ω) = i] =
1

P (Ai)

∫

Ai

f(ω) dP for ω ∈ Ai

Although g(ω) is a function it is really only different constants on different Ai. In other
words it is a function measurable with respect to the partition P. The values {gi} are
averages adjusted for the information we have, i.e. conditional expectation. One way to
obtain the conditional expectation is to define a new measure (assume f ≥ 0 as we can
always deal with f± separately)

Q(A) =

∫

A

f(ω)dP

Q is absolutely continuous with respect to P , on F and therefore on P as well. The Radon-
Nkodym derivatives dQ

dP
are different. On F it is f . But on P it is g. If we replace P by

an arbitrary sub-σ-field G then the Radon-Nikodym derivative dQ
dP

on G is the conditional
expectation of f given G and is G measurable. Its value only depends on the information
contained in G. Formally it is defined by two properties

∫

A

f dP =

∫

A

g dP for all A ∈ G ; g is G measurable

g is denoted by g = E[f | G]. It has some properties, if G2 ⊂ G1 ⊂ F and g1 = E[f | G1],
then

E[f | G2] = E[g1 | G2]

If h is G measurable then
E[hf | G] = h E[f | G]

Given G h is a constant and not ”random”.

Conditional Probability. Conditional probability is no different from conditional ex-
pectation. If we take f to be the indicator function of a set A ∈ F , then Q(ω, A) is defined
by

Q(ω, A) = P (A|G) = E[1A(ω)|G]

The defining relation becomes

∫

B

Q(ω, A)dP = P (A ∩ B) for B ∈ G, A ∈ F

with the condition that Q(ω, A) is G measurable for every B ∈ F . More over one tries to
choose Q(ω, A) so that for almost all ω it is a countably additive measure on F . The last
point is technical and needs some assumptions on the nature of (Ω,F).
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Disintegration. Suppose (X,F) and (Y,G) are two spaces and f : X → Y is a measurable
map. Then if P is a probability measure on X it induces Q on Y by Q = Pf−1, i.e.

Q(A) = P [x : f(x) ∈ A]

One can think of conditional probability as writing

P =

∫

µydQ(y)

where µy is supported on Xy = {x : f(x) = y}. The sub-σ-field of sets of the form
B = {x : f(x) ∈ A} = f−1(A) as A varies over G is the natural σ-field with respect to
which the conditioning is being done. The measure µy supported on Xy can be viewed as
a measure on X and Q(x, A) = µf(x)(A) = µf(x)(A∩Xf(x)) is the conditional probability.

Conversely given Q on (Y,G) and µy on Xy one can define P on (X,F) by integrating.
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