15 Solutions

It is biased and $\hat{t} = \frac{n-1}{n}\hat{\theta}$ is unbiased.

$$Var(\hat{t}) = (n-1)^2 \theta^2 \left[\frac{1}{(n-1)(n-2)} - \frac{1}{(n-1)^2} \right] = \frac{\theta^2}{n-2} \ge \frac{\theta^2}{n} = \frac{1}{nI(\theta)}$$

It is asymptotically efficient.

• MLE is the Median. By symmetry it is unbiased.

$$\frac{\partial \log f}{\partial \theta} = -\mathrm{sign}(x - \theta)$$

$$I(\theta) = 1$$

Cramer-Rao lower bound is $\frac{1}{n}.$ Asymptotic variance of the MLE is

$$\frac{4}{n[f(\theta)]^2} = \frac{1}{n}$$

• A statistic is $T(0), \ldots, T(n)$. Unbiased means

$$\sum_{j} \binom{n}{j} \left[\frac{3}{4}\right]^{j} \left[\frac{1}{4}\right]^{n-j} T(j) = \frac{3}{4}$$

and

$$\sum_{j} \binom{n}{j} \left[\frac{1}{4}\right]^{j} \left[\frac{3}{4}\right]^{n-j} T(j) = \frac{1}{4}$$

Two equations. n + 1 unknowns. Lots of solutions. Easy to construct unbiased estimators with variance that is very small. For example if nis odd T(x) = a if $x < \frac{n}{2}$ and T(x) = b if $x > \frac{n}{2}$ can be made unbiased by proper choice of a and b. If we denote by

$$p_n = \sum_{j < \frac{n}{2}} \binom{n}{j} \left[\frac{3}{4}\right]^j \left[\frac{1}{4}\right]^{n-j} = \sum_{j > \frac{n}{2}} \binom{n}{j} \left[\frac{1}{4}\right]^j \left[\frac{3}{4}\right]^{n-j}$$

we need

$$ap_n + b(1 - p_n) = \frac{1}{4}$$

and

$$a(1-p_n)+bp_n=\frac{3}{4}$$

giving us $a = \frac{4p_n - 3}{8p_n - 4}$ and $b = \frac{4p_n - 1}{8p_n - 4}$. The variance is given by

$$\sigma^{2} = p_{n}(a - \frac{1}{4})^{2} + (1 - p_{n})(b - \frac{1}{4})^{2}$$

and is seen to be very very small for large n.

• The log-likelihood is

$$-\frac{n}{2}\log\theta - \frac{1}{2\theta}\sum_{i}(x_i - \theta)^2 = -\frac{n}{2}\log\theta - \frac{1}{2\theta}\sum_{i}x_i^2 + \sum_{i}x_i - \frac{n}{2}\theta$$

Clearly $U_n = \frac{1}{n} \sum x_i^2$ is sufficient and the likelihood equation is

$$-\frac{1}{\theta} + \frac{U_n}{\theta^2} - 1 = 0$$

$$\theta^2 + \theta = U_n$$

This gives

$$\theta_n = -\frac{1}{2} + \sqrt{\frac{1}{4} + U_n}$$

which is consistent because

$$-\frac{1}{2} + \sqrt{\frac{1}{4} + \theta^2 + \theta} = \theta$$

Has an asymptotic variance

$$\frac{1}{n} \operatorname{var} (x^2) [f'(\theta^2 + \theta)]^2$$

with

$$f(y) = -\frac{1}{2} + \sqrt{\frac{1}{4} + y}$$
$$f'(\theta^2 + \theta) = \frac{1}{2\theta + 1}$$

and

On simplification this reduces to
$$\frac{1}{n} \frac{2\theta^2}{(1+2\theta)^2}$$
. The Cramer-Rao lower bound is eaxctly the same. The efficiency of the mean with variance $\frac{\theta}{n}$ is given by $\frac{2\theta}{(1+2\theta)^2}$.

• The log-likelihood function is

$$-n\log\Gamma(p) - \sum x_i + (p-1)\sum\log x_i$$

Tha likelihood equation is

$$\frac{\Gamma'(p)}{\Gamma(p)} = G(p) = \frac{1}{n} \sum \log x_i$$

and the MLE is

$$\hat{\theta}_n = G^{-1}(\frac{1}{n}\sum \log x_i)$$

It is consistent because

$$\hat{\theta}_n \to G^{-1}(m)$$

or

where

$$m = \int \frac{1}{\Gamma(p)} e^{-x} x^{p-1} \log x dx = G(p)$$

and

$$G^{-1}(G(p)) = p$$

 $\hat{\theta}_n$ is asymptotically normal with variance $\frac{\mathrm{var}~(\log x_i)}{n[G'(p)]^2}$. The quantity I(p) is calculate easily as

$$I(p) = E[(\log x - G(p))^2] = \text{var}(\log x) = G'(p)$$

• To test $f_0(x) = 2x$ against $f_1(x) = 2(1-x)$ the critical region is $\frac{1-x}{x} > c$ or x < c. Size is $\int_0^c 2x dx = c^2 = \alpha$ or $c = \sqrt{\alpha}$. Power is calculated to be

$$\int_0^{\sqrt{\alpha}} 2(1-x)dx = 2\sqrt{\alpha} - \alpha$$

- The critical region can be any subset of $[0, \frac{1}{2}]$ if $\alpha < \frac{1}{2}$ or the entire $[0, \frac{1}{2}]$ along with a subset of $[\frac{1}{2}, 1]$ if $\alpha > \frac{1}{2}$. The power is 2α if $\alpha < \frac{1}{2}$ and 1 if $\alpha > \frac{1}{2}$.
- The critical region is of the form $\sqrt{n}|\bar{x}_n| > c$ and c = 1.96 from the tables. Power at $\mu = 1$ is $P[|z \sqrt{n}| > 1.96]$ is essentially $P[z < \sqrt{n} 1.96]$ and this is .95 if $\sqrt{n} > 1.96 + 1.64 = 3.61$ or $n > (3.61)^2 = 14$