15 Solutions

$$
\begin{gathered}
\frac{\partial \log p}{\partial \theta}=\frac{-2(x-\theta)}{1+(x-\theta)^{2}} \\
I(\theta)=\frac{1}{\pi} \int\left[\frac{-2(x-\theta)}{1+(x-\theta)^{2}}\right]^{2} \frac{1}{1+(x-\theta)^{2}} d x=\frac{4}{\pi} \int \frac{x^{2}}{\left(1+x^{2}\right)^{3}} d x=\frac{1}{2}
\end{gathered}
$$

$$
\begin{gathered}
f\left(\theta, x_{1}, \ldots, x_{n}\right)=\theta^{n} \exp \left[-\theta \sum x_{i}\right] \\
\frac{\partial \log f\left(\theta, x_{1}, \ldots, x_{n}\right)}{\partial \theta}=\frac{n}{\theta}-\sum_{i} x_{i} \\
\hat{\theta}=\frac{n}{\sum x_{i}} \\
E[\hat{\theta}]=\int_{0}^{\infty} \frac{n}{t} \frac{\theta^{n}}{\Gamma(n)} \exp [-\theta t] t^{n-1} d t=\frac{n \theta}{n-1}
\end{gathered}
$$

It is biased and $\hat{t}=\frac{n-1}{n} \hat{\theta}$ is unbiased.
$\operatorname{Var}(\hat{t})=(n-1)^{2} \theta^{2}\left[\frac{1}{(n-1)(n-2)}-\frac{1}{(n-1)^{2}}\right]=\frac{\theta^{2}}{n-2} \geq \frac{\theta^{2}}{n}=\frac{1}{n I(\theta)}$

It is asymptotically efficient.

- MLE is the Median. By symmetry it is unbiased.

$$
\begin{gathered}
\frac{\partial \log f}{\partial \theta}=-\operatorname{sign}(x-\theta) \\
I(\theta)=1
\end{gathered}
$$

Cramer-Rao lower bound is $\frac{1}{n}$. Asymptotic variance of the MLE is

$$
\frac{4}{n[f(\theta)]^{2}}=\frac{1}{n}
$$

- A statistic is $T(0), \ldots, T(n)$. Unbiased means

$$
\sum_{j}\binom{n}{j}\left[\frac{3}{4}\right]^{j}\left[\frac{1}{4}\right]^{n-j} T(j)=\frac{3}{4}
$$

and

$$
\sum_{j}\binom{n}{j}\left[\frac{1}{4}\right]^{j}\left[\frac{3}{4}\right]^{n-j} T(j)=\frac{1}{4}
$$

Two equations. $n+1$ unknowns. Lots of solutions. Easy to construct unbiased estimators with variance that is very small. For example if n is odd $T(x)=a$ if $x<\frac{n}{2}$ and $T(x)=b$ if $x>\frac{n}{2}$ can be made unbiased by proper choice of a and b. If we denote by

$$
p_{n}=\sum_{j<\frac{n}{2}}\binom{n}{j}\left[\frac{3}{4}\right]^{j}\left[\frac{1}{4}\right]^{n-j}=\sum_{j>\frac{n}{2}}\binom{n}{j}\left[\frac{1}{4}\right]^{j}\left[\frac{3}{4}\right]^{n-j}
$$

we need

$$
a p_{n}+b\left(1-p_{n}\right)=\frac{1}{4}
$$

and

$$
a\left(1-p_{n}\right)+b p_{n}=\frac{3}{4}
$$

giving us $a=\frac{4 p_{n}-3}{8 p_{n}-4}$ and $b=\frac{4 p_{n}-1}{8 p_{n}-4}$. The variance is given by

$$
\sigma^{2}=p_{n}\left(a-\frac{1}{4}\right)^{2}+\left(1-p_{n}\right)\left(b-\frac{1}{4}\right)^{2}
$$

and is seen to be very very small for large n.

- The log-likelihood is

$$
-\frac{n}{2} \log \theta-\frac{1}{2 \theta} \sum\left(x_{i}-\theta\right)^{2}=-\frac{n}{2} \log \theta-\frac{1}{2 \theta} \sum x_{i}^{2}+\sum_{i} x_{i}-\frac{n}{2} \theta
$$

Clearly $U_{n}=\frac{1}{n} \sum x_{i}^{2}$ is sufficient and the likelihood equation is

$$
-\frac{1}{\theta}+\frac{U_{n}}{\theta^{2}}-1=0
$$

or

$$
\theta^{2}+\theta=U_{n}
$$

This gives

$$
\theta_{n}=-\frac{1}{2}+\sqrt{\frac{1}{4}+U_{n}}
$$

which is consistent because

$$
-\frac{1}{2}+\sqrt{\frac{1}{4}+\theta^{2}+\theta}=\theta
$$

Has an asymptotic variance

$$
\frac{1}{n} \operatorname{var}\left(x^{2}\right)\left[f^{\prime}\left(\theta^{2}+\theta\right)\right]^{2}
$$

with

$$
f(y)=-\frac{1}{2}+\sqrt{\frac{1}{4}+y}
$$

and

$$
f^{\prime}\left(\theta^{2}+\theta\right)=\frac{1}{2 \theta+1}
$$

On simplification this reduces to $\frac{1}{n} \frac{2 \theta^{2}}{(1+2 \theta)^{2}}$. The Cramer-Rao lower bound is eaxctly the same. The eficiency of the mean with variance $\frac{\theta}{n}$ is given by $\frac{2 \theta}{(1+2 \theta)^{2}}$.

- The log-likelihood function is

$$
-n \log \Gamma(p)-\sum x_{i}+(p-1) \sum \log x_{i}
$$

Tha likelihood equation is

$$
\frac{\Gamma^{\prime}(p)}{\Gamma(p)}=G(p)=\frac{1}{n} \sum \log x_{i}
$$

and the MLE is

$$
\hat{\theta}_{n}=G^{-1}\left(\frac{1}{n} \sum \log x_{i}\right)
$$

It is consistent because

$$
\hat{\theta}_{n} \rightarrow G^{-1}(m)
$$

where

$$
m=\int \frac{1}{\Gamma(p)} e^{-x} x^{p-1} \log x d x=G(p)
$$

and

$$
G^{-1}(G(p))=p
$$

$\hat{\theta}_{n}$ is asymptotically normal with variance $\frac{\operatorname{var}\left(\log x_{i}\right)}{n\left[G^{\prime}(p)\right]^{2}}$. The quantity $I(p)$ is calculate easily as

$$
I(p)=E\left[(\log x-G(p))^{2}\right]=\operatorname{var}(\log x)=G^{\prime}(p)
$$

- To test $f_{0}(x)=2 x$ against $f_{1}(x)=2(1-x)$ the critical region is $\frac{1-x}{x}>c$ or $x<c$. Size is $\int_{0}^{c} 2 x d x=c^{2}=\alpha$ or $c=\sqrt{\alpha}$. Power is calculated to be

$$
\int_{0}^{\sqrt{\alpha}} 2(1-x) d x=2 \sqrt{\alpha}-\alpha
$$

- The critical region can be any subset of [0, $\frac{1}{2}$] if $\alpha<\frac{1}{2}$ or the entire [$0, \frac{1}{2}$] along with a subset of $\left[\frac{1}{2}, 1\right]$ if $\alpha>\frac{1}{2}$. The power is 2α if $\alpha<\frac{1}{2}$ and 1 if $\alpha>\frac{1}{2}$.
- The critical region is of the form $\sqrt{n}\left|\bar{x}_{n}\right|>c$ and $c=1.96$ from the tables. Power at $\mu=1$ is $P[|z-\sqrt{n}|>1.96]$ is essentially $P[z<$ $\sqrt{n}-1.96]$ and this is .95 if $\sqrt{n}>1.96+1.64=3.61$ or $n>(3.61)^{2}=14$

