
1 Parametric Models.

To begin with on a space X we have a family Pθ of probability distributions. In
practice X will be either a countable set of points {x} and Pθ specified by the
individual probabilities p(θ, x) for x ∈ X . They will of course satisfy∑

x

p(θ, x) ≡ 1

Or one may have the situation where X is some finite dimensional space Rd (or
perhaps a suset of one). Pθ in such situations will be specified by probability
densities f(θ, x) with respect to the Lebesgue measure on Rd. In such a case∫

Rd

f(θ, x)dx ≡ 1

The set Θ of possible values of the parameters is also usually a subset of
some Rk. The integer k represents the number of parameters in the problem.

Identifiability. One assumes that if θ1 6= θ2 are two distinct values of the pa-
rameter from Θ then the two probability measures Pθ1 and Pθ2 are different.

In statistical terminology an observation is a point x ∈ X that has been
observed. The true value of the parameter is unknown, although it is known
that it comes from the set Θ.

The Model. The basic philosophy is that Pθ descibes the probability distribution
of the result x of an experiment. The real underlying physical situation that
generated the result is identified by the parameter θ. The model is specified
by decribing how the probabilities of various events concerning the result of the
experiment are determined by the parameter θ ∈ Θ, i.e. by Pθ.

Inference. Inference or Statistical Inference is a statement regarding the true
value of the parameter based on the observation or ‘evidence’ x.

Inference in mathematics is based on logic, and presumably infallible atleast
when correctly applied. Statistical inference on the other hand is based on prob-
abilities. One is rarely certain about the inference. But one has a certain level of
‘confidence’ that can be expressed quantitaively. As more evidence is gathered
the level confidence increases and approaches certainty only asymptotically.

Random Sample and Sample Size. If we have just a single observation, since
most of the time any result or observation is compatible with any value of the
parameter, i.e. for the observed x, p(θ, x) > 0 or f(θ, x) > 0 for all θ, one can
never be sure of what θ is, based on a single observation x. However if we have
repeated observations, we can gather more evidence and will be able to make
more confident inference. If we have n independent observations under the same
model, i.e. if we have a random smaple of size n, X gets replaced by its n-fold
product X(n) and

p(θ, x1, . . . , xn) = Πn
i=1p(θ, xi)
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f(θ, x1, . . . , xn) = Πn
i=1f(θ, xi)

Examples.

1. The Normal family {f(µ, ;x)} with µ ∈ R is given by the densities

f(µ, ;x) =
1√
2π

exp[− (x− µ)2

2
] (1.1)

is a one parameter family of probability densities on R.

2. The Normal family {f(µ, θ ;x)} with µ ∈ R and θ > 0 is given by the
densities

f(µ, θ ;x) =
1√
2πθ

exp[− (x− µ)2

2θ
] (1.2)

is two parameter family of probability densities on R.

3. The family of Gamma distributions

f(α, p ;x) =
αP

Γ(p)
exp[−αx]xp−1 (1.3)

for α, p > 0 is a two parameter family of densities on [0,∞)

4. The family of Beta distributions

f(p, q ;x) =
1

β(p, q)
xp−1(1 − x)q−1 (1.4)

for p, q > 0 is a two parameter family of densities on [0, 1]

5. The family of Cauchy distributions

f(µ ;x) =
1
2π

1
1 + (x− µ)2

(1.5)

is a one parameter family densities on R.

6. For any density f on R, the family

f(µ ;x) = f(x− µ) (1.6)

is a one parameter family of densities on R and µ ∈ R is called the location
parameter.

7. For θ ∈ R the two sided exponential family is defined by

f(θ, x) =
1
2

exp[−|x− θ|] (1.7)
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8. For any density f on R, the family

f(µ, σ ;x) =
1
σ
f(
x− µ

σ
) (1.8)

is a two parameter family of densities on R. µ ∈ R is called the location
parameter and σ > 0 is called the scale parameter.

We now provide some examples of discrete distributions.

9. For any positive integer k, the Binomial family of probabilities on
X = {0, 1, 2, . . . , k} are given by

p(θ ;x) =
(
k

x

)
θx(1 − θ)k−x (1.9)

for 0 ≤ θ ≤ 1

10. The Poisson family on X = {0, 1, 2, . . . . . . } has probabilities

p(λ ;x) =
e−λλx

x!
(1.10)

11. The uniform distributions

f(a, b ;x) =

{
1

b−a for a ≤ x ≤ b

0 otherwise
(1.11)

is a two parameter family where the set of possible values of x depends on
the parameters −∞ < a < b <∞.

12. The uniform distributions

f(θ ;x) =

{
1
θ for 0 ≤ x ≤ θ

0 otherwise
(1.12)

is a one parameter family where the set of possible values of x depends on
the parameter 0 < θ <∞. This is a subfamily of the previous example.

13. Finally, the family of multivariate normal distributions on Rd is
parametrized by their mean µ ∈ Rd and covariance A, a symmetric posi-
tive definite d× d matrix. The densities are given by

f(µ,A ;x) =
1

(2π)
d
2

1
|A| 12 exp[−1

2
< (x− µ), A−1(x− µ) >] (1.13)
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2 Decision Theory.

We have a family of models indexed by a parameter θ from the set Θ of all
possible values of the parameter. The model has generated an observation and
the model in particular specfies the probability distribution on the set Ω of
observations ω, that depends on the parameter θ. There is a set D of possible
decisions or actions d. How good or bad a decision d is, will depend on the true
value of the parameter, which we do not know. The only information available,
upon which we can base our decision, is the observation ω. A decision rule is
then a function d(ω) that determines the decision as function of the observation.
We have a loss function L(θ, d) that meausres how bad the decision d is, if the
value of the parameter is θ. The expected loss, called Risk, is the function

R(d, θ) = Eθ[L(θ, ω)] (2.1)

The object of the game is to look for d ∈ D that minimizes R(d, θ). This is hard
to do. Since for each d ∈ D, R(d, θ) is a function on Θ, to compare d1 and d2

we must compare R(d1, θ) and R(d2, θ) for all values of θ. A decision rule d is
said to be inadmissible if there is a d′ such that R(d′, θ) ≤ R(d, θ) for all θ with
strict inequality holding for atleast one θ. Anything that is not inadmissible is
admissible. We could try to guard against the worst situation by trying

inf
d∈D

sup
θ∈Θ

R(d, θ) (2.2)

Or, if we believe in some prior distribution µ of possible values of the true
parameter, we can average over the values of θ and try

inf
d∈D

∫
Θ

R(d, θ)dµ(θ) (2.3)

These are called respectively, the minimax and Bayes solutions.

3 Estimation.

A particular decision problem is to arrive at the true value of the parameter. In
this case D = Θ and the decision rule d(ω) is really a map from Ω → Θ. Such
a map θ̂ = U(ω) is called an estimator of θ. L is usually a measure of how far
apart θ and θ̂ are. For example if Θ = R then L(θ, θ̂) could be |θ − θ̂|2

We will look at the situation where we have n independent observations from
a probability distribution Pθ specified either by the probabilities p(θ, x) in the
discrete case, or by a density function f(θ, x) in the continuious case. The set
X of possible values of the observation is either the integers or some similar
finite or countable set (when the probabilities are specified as functions of θ),
or the real line or d-dimensional Euclidean space (when the density is specified
as a function of θ).

An estimator based on n observations is a function U(x1, . . . , xn) that is
a fuction of (x1, . . . , xn) only. That is to say it can not depend on θ. Since
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we will always assume that the observations are independent, the probability
distribution for the n observations is the product probabilities or the product
density as the case may be.

An estimator of U(x1, . . . , xn) is called an unbised estimator of θ if

Eθ[U(x1, . . . , xn)] ≡ θ (3.1)

Here we will use the notation Eθ to denote either

Eθ[U(x1, . . . , xn)] =
∑

x1,... ,xn

U(x1, . . . , xn)p(θ, x1) . . . p(θ, xn)

or

Eθ[U(x1, . . . , xn)] =
∫

Rn

U(x1, . . . , xn)f(θ, x1) . . . f(θ, xn)dx1 · · · dxn

depending on the circumstance. Different unbiased estimators can be compared
with the help of their variances, which is the risk corresponding to the loss
function |θ − θ̂|2

It is useful to introduce the name of likelihood function. It is either p(θ, x) or
f(θ, x) and is denoted by L(θ, x). For n obsrvations it is the product function.
But the likelihood function will more often than not be viewed as a function of
θ rather than a function of the observations.

The following result gives a lower bound on the variance of any unbiased
estimator. Let I(θ) be defined by

I(θ) = Eθ

[[∂ logL(θ, x)
∂θ

]2
]

(3.2)

From the relation
∑

x p(θ, x) ≡ 1 or
∫
f(θ, x)dx ≡ 1, one can conclude easily

that

Eθ

[[∂ logL(θ, x)
∂θ

]] ≡ 0 (3.3)

From independence, for the likelihood function L(θ, x1 . . . , xn) based on n ob-
servations, we can conclude from equations (3.2) and (3.3) that

In(θ) = Eθ

[[∂ logL(θ, x1, . . . , xn)
∂θ

]2
]

= nI(θ) (3.4)

If U is unbiased, by differentiating equation (3), we get

Eθ[U(x1, . . . , xn)
∂ logL(θ, x1 . . . , xn)

∂θ
] ≡ 1

which, because of equation (3.3) can be rewritten as

Eθ

[
[U(x1, . . . , xn) − θ]

∂ logL(θ, x1 . . . , xn)
∂θ

] ≡ 1 (3.5)
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We use Schwartz’s inequality to derive from equations (3.4) and (3.5), the
Cramér-Rao Lower Bound

Eθ

[[
U(x1, . . . , xn)

]2
]
≥ 1
nI(θ)

(3.6)

In particular if we find an unbiased estimator U that matches the Cramér-Rao
Lower Bound, it is hard to beat and it is called a MVUB estimator (for minimum
variance unbiased estimator)

Examples.

1. The family is the Normal family given by 1.1. The sample mean
U(x1, . . . , xn) = x1+...+xn

n is clearly an unbised estimator of µ. Its vari-
ance is 1

n . The information function I(µ) is calculated easily.
∂ log L

∂µ = (x− µ) and I(µ) ≡ 1 and the Cramér-Rao Lower Bound is at-
tained.

2. Let us look at the Binomial example (1.9). Eθ[x
k ] = θ and the variance of

x
k is equal to θ(1−θ)

k . The likelihood function is given by

L(θ) = log
(
k

x

)
+ x log θ + (k − x) log(1 − θ)

∂ logL
∂θ

=
x

θ
− (k − x)

1 − θ
=

x− kθ

θ(1 − θ)

and the information function is calculated to be k
θ(1−θ) .

If we examine a little closely when equality can hold in Schwartz’s inequality, it
is clear that for the Cramér-Rao lower bound to be attained, we must have

∂ logL
∂θ

= k(θ)(U(x1, . . . , xn) − θ)

which leads to the form

logL = a(θ)U(x1, . . . , xn) + b(θ) +W (x1, . . . , xn)

If the the likelihood function of a single observation looks like

logL = a(θ)V (x) + b(θ) +W (x)

then

U(x1, . . . , xn) =
n∑

i=1

V (xi)
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is a MVUB estimator of its expectation. We can reparametrize and put the
likelihood in a more canonical form

L = b(θ)W (x) exp[θV (x)] (3.7)

It is a simple calculation that

Eθ[V (x)] =
b′(θ)
b(θ)

We now turn our attention to the example given by (1.12). For any given
x, the likelihood function has a discontinuity at θ = x. It is zero if θ < x and
equals 1

θ for θ > x. Now all bets are off. One can see that with U(x1, . . . , xn) =
max(x1, . . . , xn)

Pθ[U ≤ x] =
xn

θn

One can verify that V = n+1
n U is unbiased and has a variance that behaves like

C
n2 , much smaller than any Cramér-Rao lower bound.
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4 Consistency.

What distinguishes a good estimator from a bad one? Ideally, as we obtain more
observations, we have more information and our estiamtor should become more
accurate. This is not a statement about a single estiamator, but one about a
sequence Un(x1, . . . , xn) of estimators.

The sequence Un(x1, . . . , xn) is said to be a consistent estiamtor of θ if, for
every δ > 0,

lim
n→∞Pθ

[
(x1, . . . , xn) : |Un(x1, . . . , xn) − θ| ≥ δ

]
= 0 (4.1)

Let us denote by mn(θ) and σ2
n(θ) the mean and variance

mn(θ) = Eθ

[
Un(x1, . . . , xn)

]
σ2

n(θ) = Eθ

[[
Un(x1, . . . , xn) −mn(θ)

]2
]

We can be sure of consistency provided limn→∞mn(θ) = θ and
limn→∞ σ2

n(θ) = 0. If for some k we have an unbiased estimator Vk(x1, . . . , xk)
we can construct a consistent sequence of estimators by taking

Un(x1, · · · , xn) =
1
`

∑̀
j=1

Vk(x(j−1)k+1, . . . , xjk)

for `k ≤ n < (`+ 1)k. The law of large numbers will guarantee the validity of
(4.1) even if the variance does not exist.

One way to generate consistent estimators is to find a function U(x) of a
single observation such that Eθ[U(x)] = f(θ) which is a one-to-one function of
θ with a continuous inverse g(θ) = f−1(θ). Then it is not hard to see that
g( 1

n

∑n
i=1 U(xi)) is consistent for θ.

Let us apply this to the two parameter normal family. Eµ,θ[x] = µ and
Eµ,θ[x2] = µ2 + θ. Clearly x̄n = x1+...+xn

n and tn = x2
1+...+x2

n

n are consistent
for µ and µ2 + θ. Then x̄n and Un = tn − x̄2

n are consistent for µ and θ. Such
an approach of using xk successively with k = 1, 2, . . . is called the method
of moments. We need as many moments as there are parameters in order to
successfully invert.

5 Sufficiency.

If we have data or observations (x1, . . . , xn) generated from a distribution Pθ

it is conceivable that we might throw away some information with out any real
loss, especially if the information can be recreated. Any information that can be
recreated must have been worthless to begin with! If the probability distribution
of an observation is known exactly, with out any unknown parameters, then
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such an observation can be created at any time by simulation and is irrelevent.
Although it seems that we are only stating the obvious, there is more here than
meets the eye.

Let us look at two scenarios. There are n identical coins all having the
same probability p of coming up head. In the first scenario they are tossed
one after another and the sequence of outcomes is recorded as word of length
n each letter being H or T . In the second scenario they are tossed at the same
time and only the total number of heads is noted. It is clear that the first
scenario offers more information. We can always count the number of heads,
but cannot tell the sequence from the total number. But if the total number
of heads is k, there are

(
n
k

)
sequences with the same number k of heads and

they all have the same probability pk(1 − p)n−k. Conditionally, given k, they
all have the probability 1

(n
k)

. Therefore if we know k, the order can be randomly

chosen, without knowing p, and no one can say if the sequence so generated is
different, statistically speaking, from the one generated by tossing the coins one
after another. Since the order can be recreated it could not have been relevent.
What ever any one can do from the full sequence we can accomplish it with just
knowing the total number of heads. So even if some one presented us with the
full sequence we must just count the total number of heads and forget the rest.
This is the philosophy behind sufficiency.

We have n independent observations (x1, x2, . . . , xn) from a population Pθ

with an unknown parameter θ ∈ Θ. A collection U1, . . . , Uk of k functions of
(x1, x2, . . . , xn), are said to be jointly sufficient for θ if the conditional proba-
bilities

Pθ

[
(x1, x2, . . . , xn) ∈ A|U1, . . . , Uk

]
= p(U1, . . . , Uk ;A) (5.1)

are independent of θ ∈ Θ. Of course θ can be a set of m parameters and k can
be any number, usually m, sometimes more than m, but rarely less than m. It
is clear that what is relevent is the σ-field generated by U1, . . . , Uk which should
be thought of as the information contaned in U1, . . . , Uk. We will look at some
examples. First we make a general observation.

If the likelihood function L(θ, x1, . . . , xn) factors into

L(θ, x1, . . . , xn) = k(θ)G(θ, U1, . . . , Uk)H(x1, . . . , xn)

then in the discrete case

Pθ

[
(x1, x2, . . . , xn) ∈ A|U1 = u1, . . . , Uk = uk

]
=

∑
A∩{x:U1=u1,... ,Uk=uk} L(θ, x1, . . . , xn)∑
{x:U1=u1,... ,Uk=uk} L(θ, x1, . . . , xn)

=

∑
A∩{x:U1=u1,... ,Uk=uk}H(x1, . . . , xn)∑
{x:U1=u1,... ,Uk=uk}H(x1, . . . , xn)
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which is independent of θ proving sufficiency. In the continuous case the sum-
mation has to be replaced by integration. There are some technical details, but
the end result is the same.

Examples.

1. If we have n observations from the binomial population (1.9) with param-
eter p, the likelihood function is given by

L(p, x1, . . . , xn) = Πn
I=1

(
k

xi

)
pxi(1 − p)k−xi

The function U(x1, . . . , xn) =
∑n

i=1 xi is seen to be sufficient.

2. If we have n observations from the Poisson population (1.10) with param-
eter λ, the likelihood function is given by

L(λ, x1, . . . , xn) = Πn
i=1e

−λλ
xi

xi!

The function U(x1, . . . , xn) =
∑n

i=1 xi is again seen to be sufficient.

3. If we have n observations from the Normal population (1.1) with mean µ
and variance 1, the likelihood function is given by

L(µ, x1, . . . , xn) = Πn
i=1

1√
2π

exp[− (xi − µ)2

2
]

=
[ 1√

2π

]n exp[−
∑

i x
2
i

2
] exp[−nµ

2

2
] exp[µ

∑
i

xi]

The function U(x1, . . . , xn) =
∑n

i=1 xi is again seen to be sufficient.

4. A similar calculation with the two parameter Normal family (1.2) with
mean µ and variance θ shows the sufficiency of (

∑
i xi ,

∑
i x

2
i ).

5. A calculation with the two parameter Gamma family (1.3) with parametrs
α and variance p shows the sufficiency of (

∑
i xi ,Πixi).

6. Finally, for the example (1.12) of uniform distribution on [0, θ] the likeli-
hood function takes the form

L(θ, x1, . . . , xn) = Πn
i=11[θ≥xi]

1
θ

=
1
θn

1[θ≥max(x1,... ,xn)]

proving the sufficiency of U(x1, . . . , xn) = max(x1, . . . , xn).

If we are given an unbiased estimator W (x1, . . . , xn) and there is a sufficient
statistic U(x1, . . . , xn) around we can replace W by a new estimator

Ŵ (U) = Eθ

[
W (x1, . . . , xn)|U]

(5.2)
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The properties of conditional expectation assures us that

Eθ

[
Ŵ (U)

] ≡ Eθ

[
W (x1, . . . , xn)

] ≡ θ

and

V arθ
[
Ŵ (U)

] ≤ V arθ
[
W (x1, . . . , xn)

]
We do better by replacing W with Ŵ . Sufficiency of the estimator is crucial
and ensures that Ŵ (U) depends only on the observations and is independent of
the unknown parameter θ. A set (U1, U2, . . . , Uk) that is sufficient for a family
Pθ is said to be complete if whenever

Eθ

[
F (U1, U2, . . . , Uk)

] ≡ 0

for all θ ∈ Θ, it follows that F ≡ 0. It is a simple argument to show that
if (U1, U2, . . . , Uk) is sufficient and complete for any family, then any function
F (U1, U2, . . . , Uk) is a MVUB estimator of its expectation

Eθ

[
F (U1, U2, . . . , Uk)

]
= f(θ)

If W is any unbiased estimator of f(θ) by sufficiency it can be replaced by Ŵ
which is better no matter what θ is. On the other hand Ŵ and F are two
unbiased estimators of the same f(θ) and the diffrence Ŵ − F has mean 0 for
all θ. Since it is a function of U1, U2, . . . , Uk that are complete and sufficient
Ŵ −F must be 0. Therefore F which is the same as Ŵ must be better than W
for all θ. Since W was arbitrary F is a MVUB estimator.

A minimum variance unbiased estimator, if it exists is unique. Suppose U1 and
U2 are both MVUB estimators with variance D(θ) for the same parameter, then
U = U1+U2

2 is an unbiased estimator as well. If we denote by W = U1−U2
2 the

identity

Var(U) + Var(W ) =
Var(U1) + Var(U2)

2
= D(θ) ≥ Var(U)

forces Var(W ) to be 0.

Examples.

1. In the case of the normal family (1.1) with mean µ and variance 1, x̄ is
sufficient. Its distribution is given by the density

fn(µ, x̄) =
√
n√
2π

exp[−n(x̄− µ)2

2
]

If F (x̄) has mean 0 for all then∫ ∞

−∞
F (y) exp[−ny

2

2
] exp[nµy]dy ≡ 0 (5.3)

From the uniqueness theorem of Laplace trnasforms it follows that F ≡ 0.
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2. For the family of uniform distribution (1.12) on [0, θ] we saw that the
sufficient statistic U = max(x1, . . . , xn) has the distribution

Pθ

[
U ≤ x] =

xn

θn

Completeness is just a consequence of the fact, that if

n

θn

∫ θ

0

F (U)Un−1dU ≡ 0

then F (U) ≡ 0. We conclude that (n+1)U
n is the MVUB estiamtor of θ.

Since Eθ[x1] = θ
2 , 2x1 is an unbiased estimator. Do you see why

Eθ

[
2x1|U

]
=

(n+ 1)U
n

?

6 Maximum Likelihood Estimators.

Perhaps the most important aspect of parametric estimation is the method of
maximum likelihood. It is a method that has three attractive qualities. It is
simple to state, if not always to carry out. It is universal. It is asymptotically
optimal. Given the likelihood function L(θ, x1, . . . , xn) the maximum likelihood
estimator θ̂ = θ̂(x1, . . . , xn) is the value of θ that maximizes the likelihood
function L(θ, x1, . . . , xn) as a function of θ for the given set (x1, . . . , xn) of
observations. In other words

θ̂(x1, . . . , xn) = argmaxθL(θ, x1, . . . , xn) (6.1)

As we can see this is a simple and universal recipe. Often, in practice, the MLE
is obtained by solving, in the one parameter case the likelihood equation

∂ logL
∂θ

=
∑

i

∂ logL(θ, xi)
∂θ

= 0 (6.2)

or more genrally, in the multi parameter case, by solving the set of k simulta-
neous equations

∂ logL
∂θj

=
∑

i

∂ logL(θ, xi)
∂θj

= 0 (6.3)

for j = 1, . . . , k to obtain {θ̂j(x1, . . . , xn)}. Let us look at a few examples.

Examples.

1. As usual we start with the Normal family (1.2).

logL = −n
2

[log 2π] − n

2
log θ − 1

2θ

∑
i

(xi − µ)2
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Solving the likelihood equations yield µ̂ = x̄ =
P

i xi

n and θ̂ =
P

i(xi−x̄)2

n ,
i.e. the sample mean and the sample variance as the two estimators for µ
and θ.

2. For the family of uniform distributions on [0, θ] (1.12) the likelihood func-
tion is maximized by the smallest admissible value of θ namely
max(x1, . . . , xn) which is then the MLE.

3. For the family of Cauchy distributions (1.5) the likelihood equation is∑
i

xi − θ

1 + (xi − θ)2
= 0

which is a mess and cannot be solved explcitly. The method still works,
but the argmax can only be numerically computed. We will later see some
ways of handling this.

7 Consistency of the MLE.

Under fairly general conditions one can prove that the MLE provides a consistent
estimate as n → ∞. A fairly simple and elegant proof can be given under
somewhat stronger assumptions than what is necessary. We will do that now.
If we have two probability distributions p1(x) and p2(x) on a countable set X
of points x, the Kullback-Leibler information number is defined by

H(p2(·)|p1(·)) =
∑

x

p2(x) log
p2(x)
p1(x)

=
∑

x

[p2(x)
p1(x)

log
p2(x)
p1(x)

]
p1(x)

=
∑

x

[p2(x)
p1(x)

log
p2(x)
p1(x)

− p2(x)
p1(x)

+ 1
]
p1(x)

=
∑

x

Φ
(p2(x)
p1(x)

)
p1(x) (7.1)

where Φ(u) = u logu − u + 1 is nonnegative and strictly positive if u 6= 1. We
have assumed here that p2(x) is not positive when p1(x) = 0 and used the fact
that

∑
x

p2(x)
p1(x)p1(x) =

∑
x p2(x) = 1 =

∑
x p1(x). A similar formula holds when

13



the distributions are given by densities

H(f2(·)|f1(·)) =
∫
f2(x) log

f2(x)
f1(x)

dx

=
∫ [f2(x)

f1(x)
log

f2(x)
f1(x)

]
f1(x)dx

=
∫ [f2(x)

f1(x)
log

f2(x)
f1(x)

− f2(x)
f1(x)

+ 1
]
f1(x)dx

=
∫

Φ
(f2(x)
f1(x)

)
f1(x)dx (7.2)

If f2(x) or p2(x) is positive when f1(x) or p1(x) is 0, the natural definition
for H(· | ·) is +∞. For a family of densities or probabilities depending on a
parameter θ let us define

H(θ1|θ2) =

{
H(f(θ1, ·)|f(θ2, ·)) continuous case
H(p(θ1, ·)|p(θ2, ·)) discrete case

(7.3)

Let us suppose that the Kullback-Leibler function is well defined for all
θ1, θ2 ∈ Θ. Then H ≥ 0 and let us suppose that it is 0 only on the diagonal
θ1 = θ2. This is the assumption of identifiability of the parameter. We will
now make the additional assumption that Θ is a closed bounded subset of Rk

for some k and that the log-likelihood function logL is a continuous function
of θ ∈ Θ. If we denote by θ0 the true unknown value of the parameter, the
expectation

F0(θ) = Eθ0 [logL(θ, xi)]

has the property that F0(θ0) ≥ F0(θ) for all θ ∈ Θ with equality hollding only
when θ = θ0. Note that the difference F0(θ0)− F0(θ) is equal to H(θ0|θ1). The
function 1

n logL(θ, x1, . . . , xn) is the average of n random functions logL(θ, xi)
and should converge by the strong law of large numbers to its expectation F0(θ).
Since F0(θ) has a unique maximum at θ = θ0 the approximating functions will
have all their global maxima close to θ0 with probability close to 1. Therefore
the argmax of L is close to θ0 with probability nearly one. This proves the
consistency of the MLE. The technical assumption that will make this proof
work is that logL(θ, xi) is continuous in θ for every x, and for each θ0 ∈ Θ,

Eθ0

[
sup
θ∈Θ

| logL(θ, xi)|
]
<∞ (7.4)

In practice the parameter space is all of Rk or if it is a subset, most often it
is not closed. If there exists an increasing family Θλ of closed bounded subsets
of Θ, that exhausts Θ as λ→ ∞ satisfying

lim
λ→∞

Eθ0

[
sup

θ∈Θc
λ

logL(θ, x)
]

= −∞ (7.5)

14



equation (7.4) can be replaced by the weaker condition,

Eθ0

[
sup

θ∈Θλ

| logL(θ, xi)|
]
<∞ (7.6)

for every θ0 ∈ Θ and λ <∞.
The proof proceeds roughly along the following lines. We have the random

function

Xn(θ, x1, . . . , xn) =
1
n

∑
i

logL(θ, xi)

defined on Θ. It converges uniformly on every Θλ to F0(θ) which has a unique
maximum at θ0. If we can rule out getting stuck with a maximum in Θc

k for
some (large) k, then the MLE has to be close to θ0. This means showing with
Pθ0 probability tending to 1,

sup
θ∈Θc

k

Xn(θ, x1 . . . , xn) < F0(θ0) − 1

for some large but fixed k. Since

sup
θ∈Θc

k

Xn(θ, x1 . . . , xn) ≤ 1
n

∑
i

sup
θ∈Θc

k

L(θ, xi)

and the law of large numbers assures the convergence of the right hand side to
Eθ0

[
supθ∈Θc

k
L(θ, xi)

]
, that is close to −∞ far large k, we are done.

Let us apply this to the example of the Gamma family (1.3) restricted to
α = 1.

logL(p, x) = − log Γ(p) − x+ (p− 1) log x

It is clear that (7.6) is valid. EpO [x] is a finite constant. Γ(p) ' p−1 for small p
and log Γ(p) ' c− (p− 1) + (p− 1

2 ) log(p− 1) for large p, by Stirling’s formula.
The calculation of

f(a, x) = sup
p≥a

[p(1 + log x) − p log p]

yields

f(a, x) =

{
a if x ≥ a

a(1 + log x) − a log a if x ≤ a

It is easily seen that Ep0 [f(x, a)] → −∞ as a→ ∞.

8 Asymptotic Normality of MLE.

We saw in the last section that under some regularity assumption on the model,
any MLE is consistent. In principle MLE need not be unique. For instance for
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the two sided exponential family, (1.7) the MLE is not unique if the number n
of observations is even. They are all consistent in that if for some (x1, . . . , xn)
there are more than 1 MLE, they are very close to each other.

The next step is to investigate what the asymptotic distribution of the
diffrence θ̂n − θ0 is. Under more regularity assumptions we will show that√
n(θ̂n − θ0) is asymptotically normally distributed with a limiting normal dis-

tribution with mean 0 and variance 1
I(θ0)

. In some sense asymptotically, the
Cramér-Rao lower bound is achieved.

The proof is surprisingly simple. We need to assume that the maximum of
the likelihood function is attained at an interior point so that the estimator θ̂n

is a solution of the likelihood equation (6.2).∑
i

∂ logL
∂θ

(θ̂n, xi) = 0

If denote by

Yn(θ, x1, . . . , xn) =
∑

i

∂ logL
∂θ

(θ, xi)

then by the mean value theorem

Yn(θ̂n, x1, . . . , xn) − Yn(θ0, x1, . . . , xn) = (θ̂n − θ0)
∑

i

∂2 logL
∂θ2

(θ̃n, xi) (8.1)

where θ̃n is some value of θ near θ̂n and θ0. Under Pθ0 , by consistency, both θ̂0
and θ̃n are close to the true value θ0. We rewrite equation (8.1) as

− 1√
n
Yn(θ0, x1, . . . , xn) = [

√
n(θ̂n − θ0)][

1
n

∑
i

∂2 logL
∂θ2

(θ̃n, xi)]

By the central limit theorem, he distribution of left hand side converges to a
Normal distribution with mean zero and variance I(θ0). By the law of large
numbers [ 1

n

∑
i

∂2 log L
∂θ2 (θ̃n, xi)] converges to the constant −I(θ0). Therefore

[
√
n(θ̂n − θ0)] has a limiting distribution which is normal with mean zero and

variance 1
I(θ0)

. We have assumed here that ∂2 log L
∂θ2 exists and is continuous. We

have also made the calculation

∂2 logL
∂θ2

=
1
L

∂2L

∂θ2
− 1
L2

[∂L
∂θ

]2
and taking expectaions

Eθ0

[
∂2 logL
∂θ2

]
= Eθ0

[
1
L

∂2L

∂θ2

]
− Eθ0

[
1
L2

[∂L
∂θ

]2
]

= −I(θ0)
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The proof is surprisingly simple. We need to assume that the maximum of

the likelihood function is attained at an interior point so that the estimator θ̂n

is a solution of the likelihood equation (6.2).∑
i

∂ logL
∂θ

(θ̂n, xi) = 0

If we denote by

Yn(θ, x1, . . . , xn) =
∑

i

∂ logL
∂θ

(θ, xi)

then by the mean value theorem

Yn(θ̂n, x1, . . . , xn) − Yn(θ0, x1, . . . , xn) = (θ̂n − θ0)
∑

i

∂2 logL
∂θ2

(θ̃n, xi) (9.1)

where θ̃n is some value of θ near θ̂n and θ0. Under Pθ0 , by consistency, both θ̂0
and θ̃n are close to the true value θ0. We rewrite equation (9.1) as

− 1√
n
Yn(θ0, x1, . . . , xn) = [

√
n(θ̂n − θ0)][

1
n

∑
i

∂2 logL
∂θ2

(θ̃n, xi)]

By the central limit theorem, the distribution of the left hand side converges to
a Normal distribution with mean zero and variance I(θ0). By the law of large
numbers [ 1

n

∑
i

∂2 log L
∂θ2 (θ̃n, xi)] converges to the constant −I(θ0). Therefore

[
√
n(θ̂n − θ0)] has a limiting distribution which is normal with mean zero and

variance 1
I(θ0)

. We have assumed here that ∂2 log L
∂θ2 exists and is continuous. We

have also made the calculation

∂2 logL
∂θ2

=
1
L

∂2L

∂θ2
− 1
L2

[∂L
∂θ

]2
and taking expectaions

Eθ0

[
∂2 logL
∂θ2

]
= Eθ0

[
1
L

∂2L

∂θ2

]
− Eθ0

[
1
L2

[∂L
∂θ

]2
]

= −I(θ0)
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10 Efficiency.

It is possible to construct an estimate that does better than the Cramér-Rao
lower bound at one point. Of course it cannot be unbiased. For instance, if we
are estimating any parameter θ the estimator U(x1, . . . , xn) ≡ c is obviously
excellent if the true value of θ is c, in which case the variance is 0. One could
make the case that this estimate is not only biased, but hopelessly so, and is
in fact not even consistent. We would like to have a theorem of the form if Un

is an estimator that is consistent for all values of θ and if
√
n(Un − θ) has an

asymptotic distribution F , then the variance

σ2(F ) =
∫
x2dF − (

∫
xdF )2 ≥ 1

I(θ)
(10.1)

It is easy to demonstrate that this is false. Look at the estimation of the un-
known mean θ of a normal distribution with variance 1. The standard estimate
is x̄n, the sample mean. Let us try to improve it at one point, say θ = 0 with
out making it worse elsewhere. We define Un = x̄n if |x̄n| ≥ n− 1

4 and Un = 0 if
|x̄n| < n− 1

4 . Clearly if θ = 0,

E[Un] =
1√
2πn

∫
|y|≥n− 1

4

ye−
ny2

2 dy = 0

V ar[Un] =
1√
2πn

∫
|y|≥n− 1

4

y2e−
ny2
2 dy = o(

1
n

)

If θ 6= 0,

E[Un] =
1√
2πn

∫
|y|≥n− 1

4

ye−
n(y−θ)2

2 dy = θ + o(
1
n

)

E[(Un − θ)2] =
1√
2πn

∫
|y|≥n− 1

4

(y − θ)2e−
n(y−θ)2

2 dy =
1
n

+ o(
1
n

)

We seem to have gained something at 0 without losing anything anywhere else.
But there is no free lunch. Suppose, θ = a

n , which is a possibility that is real,
because as n is large but finite, θ can be nonzero but small. In such a case

E[Un] =
1√
2πn

∫
|y|≥n− 1

4

ye−
n(y− a√

n
)2

2 dy = o(
1
n

)

E[(Un)2] =
1√
2πn

∫
|y|≥n− 1

4

y2e−
n(y− a√

n
)2

2 dy = o(
1
n

)

E[(Un − θ)2] =
a2

n
+ o(

1
n

)

For a >> 1 there is a considerable loss. Let us now formulate a correct theorem.

Theorem 10.1. Let Un be an estimator such that for some θ0 and for every
sequence θn → θ0,

lim
n→∞Pθn [

√
n(Un − θn) ≤ x] = F (x)
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exists. Then ∫
x2dF (x) ≥ σ2(F ) ≥ 1

I(θ0)

Proof. We will give a proof under the additional assumption that F has a nice
density f although it is not needed.

lim
n→∞Pθ0+ a√

n
[
√
n(Un − θn − a√

n
) ≤ x] = F (x)

or

lim
n→∞Pθ0+

a√
n
[
√
n(Un − θn − a√

n
) ≤ x+ a] = F (x)

and therefore

lim
n→∞Pθ0+

a√
n
[
√
n(Un − θn − a√

n
) ≤ x] = F (x− a)

It follows from Jensen’s inequality that∫
log

fn(u)
fn(u − a)

fn(u)du ≤ n

∫
log

Ln(x)
Ln(θ0 + a√

n
, x)

Ln(x)dx

Where fn is the density of
√
n(Un − θn) under Pθn . From the lower semi con-

tinuity of the Kullback-Lebler information number and the smoothness of the
log-likelihood function we conclude that∫

log
f(u)

f(u− a)
f(u)du ≤ 1

2
a2I(θ0)

Dividing by a2 and passing to the limit yields

I =
∫

(f ′(u))2

f(u)
du ≤ I(θ0)

For the estimation of the location parameter a in the family {f(x − a)}, the
information function is the constant I, and in this context x− ∫

uf(u)du is an
unbiased estimator based on a sample of size 1. Its variance is σ2(F ) and by
the Cramér- Rao lower bound

σ2(F ) ≥ 1
I
≥ 1
I(θ0)

11 Order Statistics.

If we have n observations x1, . . . , xn and arrange them in increasing order x(1) ≤
. . . ≤ x(n), then {x(i) : 1 ≤ i ≤ n} are called the order statistics. They are
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clearly sufficient set of statistics. The reduction of data is not much. The
only information that is lost are the original labels. A function of the original
observations is a function of the order statistics if and only if it is a symmetric
function of the n observations. x(k) is called the k-th order statistic. The median
is defined as x( n+1

2 ) if n is odd. If n is even, it is a bit ambiguous, any value
between x( n

2 ) and x( n+2
2 ) being reasonable. In practice one often takes it as

1
2 (x( n

2 ) + x( n+2
2 )).

Let us suppose that our observations are drawn from the uniform distribution
in the interval [0, 1]. The distribution function of the k-th order statistic from
a sample of size n is not hard to evaluate. x(k) ≤ x if and only if there are
atleast k observations that are less than or equal to x. Its distribution function
is therefore given by

Fk,n(x) =
∑
j≥k

(
n

j

)
xj(1 − x)n−j

and its density by

fk,n(x) =
dFk,n(x)

dx
=

∑
j≥k

(
n

j

)
[jxj−1(1 − x)n−j − (n− j)(1 − x)n−j−1]

= n

(
n− 1
k − 1

)
xk−1(1 − x)n−k

Let us suppose that k = kn is such that kn

n → p where 0 < p < 1. We
are interested in the asymptotic behavior of the density 1√

n
fkn,n(p + y√

n
) of

y =
√
n(x(kn) − p). Using Stirling’s approximation it is not hard to see that

lim
n→∞
kn
n

→p

√
n

(
n− 1
k − 1

)
(p+

y

n
)kn−1(1 − p− y

n
)n−kn =

1√
2πp(1 − p)

e−
y2

2p(1−p)

proving that the normalized order statistic y =
√
n(x(kn)−p) has asymptotically

a normal distribution with mean 0 and variance p(1 − p) provided kn

n → p. In
particular for the median p = 1

2 and p(1 − p) = 1
4 .

If F (x) is a distribution function the solution x = xp of F (x) = p is called
the p-th quantile. If F is continuous and strictly increasing it exists and is
unique. If F has density f(x) that is positive, then all the quantiles are well
defined.

Another useful fact in dealing with order statistics is that if F is any continu-
ous distribution, then the distibution y = F (x) where x is distributed according
to F (·), is uniform on [0, 1]. Let us suppose that F , in addition, is strictly
increasing. If it continuous, but has flat regions we can approximate it by con-
tinuous strictly increasing F ’s. Let 0 < t < 1. Then

P [F (x) ≤ t] = P [x ≤ F−1(t)] = F (F−1(t)) = t
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From our earlier discussion, and the fact that the nondecreasing function F pre-
serves order, we conclude that if kn

n → p, then the distribution of
√
n(F (x(kn))−

p) is asymptotically normal with mean 0 and variance p(1 − p). Since xkn =
F−1(F (x(kn))) the asymptotic distribution of

√
n(x(kn) − xp) is agian normal,

with mean 0 and variance p(1 − p)[dF−1(p)
dp ]2. If we assume that F has a den-

sity that is continuous and positive at x = xp, then dF−1(p)
dp = 1

f(xp) . So the

asymptotic variance of the normalized sample p-th quantile is p(1−p)
(f(xp))2 . For the

sample median it is 1
4(f(xp))2 . For the normal diistribution with variance σ2,

f(x 1
2
) = 1√

2πσ
and the asymptotic variance of the normalized median is πσ2

2 . It
is of course larger than the variance of the sample mean, which is optimal, and
the ratio of the two variances is 2

π . This is called the efiiciency of the median.
Let us consider the Cauchy family 1

π
1

1+(x−θ)2 . The asymptotic variance of

the normalized median is π2

4 . That of the normalized MLE is 1
I(θ) , where

I(θ) =
1
π

∫
1

1 + (x− θ)2
4(x− θ)2

(1 + (x− θ)2)2
dx =

4
π

∫
x2

(1 + x2)3
dx = c

that is independent of θ and can be evaluated.
The MLE is the solution θ̂n of

ψ(θ) =
1
n

∑
i

xi − θ

1 + (xi − θ)2
= 0

If we denote by Un the median,

0 = ψ(θ̂n) = ψ(Un) + (Un − θ̂n)ψ′(Un) ' ψ(Un) − c(Un − θ̂n)

Therefore,

U ′
n = Un − ψ(Un)

c

is a better approximation to the MLE than the median and because of the
rapidity of the convergence of Newton’s method, after one iteration U ′

n is as
good as the MLE.

In other situations where I(θ) is not a constant, but depends on θ, one can
estimate I(θ) by 1

n

∑n
i=1[

∂ log L
∂θ (Un, xi)]2, where Un is a preliminary consistent

estimate. In general, the second approximation is given by

U ′
n = Un −

∑n
i=1

∂ log L
∂θ (Un, xi)∑n

i=1[
∂ log L

∂θ (Un, xi)]2
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