
23 Two stage procedures.

Suppose we are interested in constructing a 95% confidence interval for the
mean µ of a normal populaton with an unknown variance σ2, We want to
make sure that the width of the interval is no more than 0.1. In other words
we want to construct a random interval (a− t, a + t) such that |t| ≤ .05, and
the probability P{µ ∈ (a − t, a + t)} ≥ 0.95 for all µ and σ2. We are free to
choose as many observations as we need to.

The usual procedure is to take a sample of size n and compute x̄ and
s, the sample meean and the sample standard deviation based on the n
observations. Since

tn−1 =
x̄ − µ

s

√
n − 1

has a t with n − 1 degrees of freedom, we cwn determine from the tables a
value t0 such that

P{|tn−1| ≤ t0} = 0.95

Then the interval (x̄ − st0
n−1

, x̄ + st0
n−1

) provides a confidence interval of width
2st0
n−1

for the mean µ at a 95% level of confidence. However we have no control

on the width of the confidence interval. If s is large the width 2st0
n−1

might
exceed 0.1. The way we proceed is that if the width is too large we draw an
additional sample of size m = m(s), that depends on s. We use the combined
mean mean ȳ = 1

n+m

∑
xi, but the old standard deviation s and construct

the new statistic

Tn−1 =
ȳ − µ

s

√
n + m

√
n − 1√

n

It is seen to have the same t distribution with n − 1 degrees of freedom no
matter what the choice of m = m(s) we make. This is because the conditional
distribution of ȳ given s is normal with mean µ and variance 1

n+m(s)
σ2 and

the scaling is done correctly. Therefore for any choice of m(s) the interval

(ȳ − st0
√

n√
(n − 1)(n + m)

, ȳ +
st0

√
n√

(n − 1)(n + m)
)

is a 95% confidence interval for µ of width 2 st0
√

n√
(n−1)(n+m)

which can be made

less than 0.1 by taking m(s) so that

2st0
√

n√
(n − 1)(n + m)

≤ 0.1
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or

m(s) ≥ 400s2t20
n − 1

n
− n

24 Sequential Procedures

Let us imagine a situation where we want to examine products from an
assembly line to be sure that the percentage of defective items is no more
than 1%. Let us examine randomly selected items one by one. If the first
three selected items are defective it seems hardly worthwhile to continue,
whereas if the first three are good it does not really convince us. The typical
procedure in this kind of a situation is to draw observations one at atime.
After each observation either make a decision one way or another, or decide
to continue and make one more observation.

Let us look at the problem of testing the null hypothesis that the obser-
vations are drwan from f0 against the alternative that they are drawn from
f1, wher f0(x) and f1(x) are two probability densites on R. The procedure
known as the sequential probablity ratio test (SPRT) is the following. Take
two numbers A0 and A1 such that A0 < 1 < A1. and for any n look at the
ratio

Rn(x1, . . . , xn) =
f1(x1) · · ·f1(xn)

f0(x1) · · ·f0(xn)

Inductively, starting from n = 1,

If Rn < A0 choose H0

If Rn > A1 choose H1

If A0 ≤ Rn ≤ A0 continue and take one more observation

It is conceivable that the procedure may never end. Of course if f0 = f1 it
never will. Assuming that f0 6= f1 let us show that the SPRT terminates
with probability one, under both H0 and H1

Consider Yi = log f1(Xi

f0(Xi)
. Under both H0 and H1, these are independent

and identically distributed random variables such that P [|Yi| ≥ `] ≥ p for
some ` > 0 and p > 0. Then either P [yi ≥ `] or P [Yi ≤ −`] ≥ p

2
. There is

then a positive probability of getting a run of k, Y -values such that

P [|Y1 + Y2 + · · · + Yk| ≥ k`] ≥ (
p

2
)k
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Pick k such that kl ≥ A1 − A0. Since such a run will occur sooner or later
the sums will get out definitely by then. Sine the probability of having to
wait for a long time for some thing with positive probabilty to happen decays
geometrically, actually the termination time N which is a random variable
has a finite expectation under H0 as well as H1.

The SPRT will have type I and type II errors like any other test. α0(A0, A1)
and α1(A0, A1). It is clear they can be controlled somehow by changing A0

and A1, and it is safer to make A0 small and A1 large. But this will force
E(N) to be large. Thers is no free lunch!

Let us try to estimate α0 and α1 in terms of A0 and A1. We denote for
each n, the sets

Dn(0) =

{
(x1, x2, . . . , xn−1) ∈ Cn−1, Rn(x1, x2, . . . , xn) < A0

}

Dn(1) =

{
(x1, x2, . . . , xn−1) ∈ Cn−1, Rn(x1, x2, . . . , xn) > A1

}

Cn =

{
(x1, x2, . . . , xn−1) ∈ Cn−1, A0 ≤ Rn(x1, x2, . . . , xn) ≤ A1

}

The errors are

α0(A0, A1) =

∞∑
n=1

∫
Dn(1)

f0(x1) · · ·f0(xn)dx1dx2 · · ·dxn

α1(A0, A1) =

∞∑
n=1

∫
Dn(0)

f1(x1) · · ·f1(xn)dx1dx2 · · ·dxn

Note that on Dn(1), Rn > A1 and on Dn(0), Rn < A0. Therefore,

α0(A0, A1) ≤ 1

A1

∞∑
n=1

∫
Dn(1)

f1(x1) · · ·f1(xn)dx1dx2 · · · dxn

=
1 − α1(A0, A1)

A1

α1(A0, A1) ≤ A0

∞∑
n=1

∫
Dn(0)

f0(x1) · · · f0(xn)dx1dx2 · · · dxn

= A0(1 − α0(A0, A1))
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In practice on chooses

A0 =
α1

1 − α0
, A1 =

1 − α1

α0

Let us see how this is applied in practice. Suppose we have observations on
the life of a product that we are testing. The density is

1

a
e−

x
a

for x ≥ 0 and a is the expected life. We would like to be sure that a = 1.
But want to be sure that the probability of accepting a product with a < .9
is no more than 0.01, while if a product is good enough, i.e. a ≥ 1.1 we want
the probability of rejecting it to be no more than 0.1.

We then have

f1 =
1

0.9
exp[− x

0.9
]

f0 =
1

1.1
exp[− x

1.1
]

α0 = 0.10

α1 = 0.01

A0 =
0.01

1 − 0.10
' 0.01

A1 =
1 − 0.01

.10
' 9.9

Rn = (
1.1

0.9
)n exp[(

1

1.1
− 1

0.9
)
∑

i

xi] = (
1.1

0.9
)n exp[−0.2

∑
i

xi ]

The region Rn < A0 becomes

∑
i

xi > 5n log
1.1

0.9
+ 5 log 100

and Rn > A1 becomes

∑
i

xi < 5n log
1.1

0.9
− 5 log 9.9

If the first alternatve happens first we accept the product. If the second
alternative occurs first we reject the product. Of course we continue testing
if we neither has occured.
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