
22 Nonparametric Methods.

In parametric models one assumes apriori that the distributions have a spe-
cific form with one or more unknown parameters and one tries to find the
best or atleast reasonably efficient procedures that answer specifc questions
regardng the parameters. If the assumptions are violated our procedures
might become faulty. Often the procedures are still valid even if they are not
the most efficient, and these are the stable or robust situations. Sometimes
we could be way off. Let us discuss this by means of two examples. We have
n observations x1, · · · , xn from some population and we want to test that
the mean is 0. If we assume that the observations come from the normal
population with mean µ and unknown variance σ2, we would naturally use
the t test. The statistic would be

t =
x̄

s

√
n − 1

where x̄ is the sample mean
P

i xi

n
and s2 is the sample variance

P
i x2

i

n
−x̄2. The

staistic t has a t distribution with n− 1 degrees of freedom. Far large n it is
nearly normal with mean 0 and variance 1. If in reality the observations came
from an exponential distribution with density ae−axdx for x ≥ 0, while for
small n t is nolonger distributed as a ”t” asymptotically it is still distrbuted
like a standard normal with mean 0 and variance 1. Using the sample mean
to do the t-test is robust for questons regarding the population mean. Let
us look at the problem testing that the variance is 1. If we use the statistic
based on the sample variance ns2 and do the χ2 test, which is natural for the
Normal model, asymptotically

Un =
ns2 − (n − 1)√

2n

will be standard normal. But if the model were exponential and the observa-
tions are drawn from e−xdx, although E[ns2] = n−1, its variance is different
and it is only

Vn =
ns2 − (n − 1)√

5n

that is asymptotically normal. We are way off.
The nonparametric odels avoids these issues and makes no assumption or

atleast only very general assumptions concerning the model. For instance if
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we want to test that x1, . . . , xn are drawn from a population with median 0,
we do it simply by counting the number of the number of observations that
are above 0. This random variable X, is a Bnomial with probability 1

2
and

far large n
X − n

2√
n
4

is asymptotically normal.
One fairly general assumption that is often made is that the probabilty

distribution from which the samples are drawn are continuous i.e. the distri-
bution function

F (x) = P [X ≤ x]

is a continuous functon of x. Then it is easy to check that the random
variable Y = F (X) which lies between 0 and 1 has the uniform distribution
on [0, 1]. To see this let us suppose for simplicity that F is strictly increasing.
Then

P [F (X) ≤ y] = P [X ≤ F−1(y)] = F (F−1(y)) = y

proving that the distribution of Y = F (X) is uniform.
If we have n observations and we want to test if F is the true underlying

distribution we may want to compare the empirical distribution

Fn(x) =
[#i : xi ≤ x]

n

with F (x) and use the Kolmogorov=-Smirnov statistic

Dn =
√

n sup
x

|Fn(x) − F (x)|

It turns out that if we employthe transformation F (xi) = yi and calculate

D∗
n =

√
n sup

0≤y≤1
| [#i : yi ≤ y]

n
− y|

The distribution of Dn, under the assumption that the observations come
from F is the same as that of D∗

n under the assumption that yi come from
the uniform distribution on [0, 1]. The asymptotics of this statistic has been
worked out. The distribution of

D∗
n(t) =

√
n
[ [#i : yi ≤ t]

n
− t

]
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is asymptotically normal with variance t(1− t). One can see this easily from
the fact that [#i : yi ≤ t] is a binomial B(n, t). The joint distribution of
{D∗

n(s), D∗
n(t)} is bivariate normal with covariance min(t, s)−ts. From these

considerations one can deduce that asymptotically the distribution of D∗
n is

that of
sup

0≤t≤1
|Z(t)|

where Z(t) is a Normal random function with mean zero and covariance
min(s, t) − st.

If one wants to test if two sets of samples x1, x−2, . . . , xn and y1, y2, . . . , ym

come from the same population F against the alternative while the x′s come
from F , the y′s come from a shifted distrbution F (x− a) for some a > 0. A
test called rank test is used for this. Let us group the n + m observations
and arrange them in increasing order. The rans of the y′s are some numbers
1 ≤ k1 ≤ k2 ≤ · · · ≤ km ≤ n+m. Under the null hypothesis we expect them
to uniformly spaced in [0, m + n], while under the alternative they should
bunch up to the right end. We want to use the statistic

Un,m =
∑

i

ki

and compute its mean and variance. It is known that

Vn,m =
Un,m − E[Un,m]√

Var Un,m

is asymptotically normal.
Let us compute the mean and variance. The following trick is often useful

in similar contexts. Let us define Zi = 1 if the i-th smallest observation is a
y and 0 otherwise. Then ∑

i

ki =
∑

jZj

Let us compute E[Zj ] and E[ZiZj].

E[Zi] =
m

n + m

is the probability that the j-th observation is a y. Note that under the
null hypothesis they are all from the same population so that all possible
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arrangement have the same probability. Similarly

E[ZiZj] =
m(m − 1)

(n + m)(n + m − 1)

E[Un,m] =
n

(n + m)

[∑
j

j
]

=
n + m + 1

2

Var Un,m = Var [Zj][
∑

j

j2] + Cov [ZjZk][
∑
j 6=k

jk]

The varinace of Zj is computed easily to be nm
(n+m)2

while the covariance
between Zi and Zj equals with N = m + n

m(m − 1)

(n + m)(n + m − 1)
− m2

(n + m)2
=

m

N2(N − 1)

[
N(m − 1) − (N − 1)m

]

= − m n

N2(N − 1)

The variance can now be computed as

Var Um,n =
mn

N2

N(N + 1)(2N + 1)

6
− m n

N2(N − 1)

[
(
∑

i

i)2 −
∑

i

i2
]

=
mn

N

(N + 1)(2N + 1)

6
− m n

N

(N + 1)

12
(3N + 2)

=
m n(N + 1)

12

Finally suppose we have a finite population from which we draw a sample
without replacement. The population is a1, . . . , aN and we draw a sample
x1, x2, . . . , xn of size n. We want to compute the mean and variance of the
sample mean x̄. It is better to work with S =

∑
ajZj where Zj is 1 if aj is

included in the sample.

E[Zj ] =
n

N
Var [Zj ] =

n(N − n)

N2

Cov [ZiZj] =
n(n − 1)

N(N − 1)
− n2

N2
= − n(N − n)

N2(N − 1)

From this it is easy to deduce that

E[x̄] = ā =

∑
aj

N
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and

Var x̄ =
1

n2

[
n(N − n)

N2

∑
i

a2
i −

n(N − n)

N2(N − 1)

∑
i,j

aiaj

]

=
N − n

nN

1

N

∑
i

(ai − ā)2

=
N − n

nN
Var a
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