20 Analysis of Variance

Suppose we have a field trial in which various types of treatments have been tried on different subjects and the effects recorded as an observation x for each individual. There are n_{i} individuals with treatment i and the observations from them are $x_{i, 1}, \ldots, x_{i, n_{i}}$. We have k such sets of observatons of sizes n_{1}, \ldots, n_{k} respectively, for a total of $N=n_{1}+\cdots+n_{k}$ observations. The model assumes that each $x_{i, n_{i}}$ is normally distributed with mean μ_{i} due to the effect of the i-th treatment and they all have a common variance σ^{2}. The null hypothesis is that there is no difference between the treatments or equivalently $\mu_{1}=\mu_{2}=\cdots=\mu_{k}$. The loglikelihood under the null hypothesis is

$$
\log L_{0}=-\frac{N}{2} \log 2 \pi-N \log \sigma-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i, j}-\mu\right)^{2}
$$

Maximization with respect to σ and μ yields

$$
\begin{aligned}
\hat{\mu} & =\frac{1}{N} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{i, j} \\
\hat{\sigma}_{0}^{2} & =\frac{1}{N} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i, j}-\hat{\mu}\right)^{2} \\
\log \hat{L}_{0} & =-\frac{N}{2} \log 2 \pi-N \log \hat{\sigma}_{0}-\frac{N}{2}
\end{aligned}
$$

Similarly under H_{1},

$$
\begin{aligned}
\log L_{1} & =-\frac{N}{2} \log 2 \pi-N \log \sigma-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i, j}-\mu_{i}\right)^{2} \\
\hat{\mu}_{i} & =\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} x_{i, j} \\
\hat{\sigma}_{1}^{2} & =\frac{1}{N} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i, j}-\hat{\mu}_{i}\right)^{2} \\
\log \hat{L}_{1} & =-\frac{N}{2} \log 2 \pi-N \log \hat{\sigma}_{1}-\frac{N}{2}
\end{aligned}
$$

The loglikelihood ratio criterion takes the form

$$
-2 \log \frac{L_{0}}{L_{1}}=N \log \frac{\hat{\sigma}_{0}^{2}}{\hat{\sigma}_{1}^{2}}
$$

so that a test can be based on

$$
U=\frac{\hat{\sigma}_{0}^{2}-\hat{\sigma}_{1}^{2}}{\hat{\sigma}_{1}^{2}}
$$

A computation yields

$$
\begin{aligned}
N \hat{\sigma}_{0}^{2} & =\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i, j}-\hat{\mu}\right)^{2} \\
& =\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{i, j}^{2}-2 \hat{\mu} \sum_{j=1}^{n_{i}} x_{i, j}+N \hat{\mu}^{2} \\
& =\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{i, j}^{2}-N \hat{\mu}^{2}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
N \hat{\sigma}_{0}^{2} & =\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i, j}-\hat{\mu}\right)^{2} \\
& =\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i, j}-\hat{\mu}_{i}\right)^{2}+2 \sum_{i=1}^{k}\left(\hat{\mu}_{i}-\hat{\mu}\right) \sum_{j=1}^{n_{i}}\left(x_{i, j}-\hat{\mu}\right)+\sum_{i=1}^{k} n_{i}\left(\hat{\mu}_{i}-\hat{\mu}\right)^{2} \\
& =N \hat{\sigma}_{1}^{2}+\sum_{i=1}^{k} n_{i}\left(\hat{\mu}_{i}-\hat{\mu}\right)^{2} \\
& =N \hat{\sigma}_{1}^{2}+\sum_{i=1}^{k} n_{i} \hat{\mu}_{i}^{2}-N \hat{\mu}^{2}
\end{aligned}
$$

The following quantities are to be computed.

$$
\begin{aligned}
T_{i} & =\sum_{j=1}^{n_{i}} x_{i, j} \\
T & =\sum_{i=1}^{k} T_{i} \\
c & =\frac{T^{2}}{N} \\
A & =\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{i, j}^{2} \\
B & =\sum_{i=1}^{k} \frac{T_{i}^{2}}{n_{i}}
\end{aligned}
$$

Then

$$
\begin{gathered}
A=c+(B-c)+(A-B) \\
N \hat{\sigma}_{0}^{2}=A-c
\end{gathered}
$$

and

$$
N \hat{\sigma}_{1}^{2}=(A-B)
$$

so that

$$
U=\frac{B-c}{A-B}
$$

It can be seen that under the null hypothesis $(B-c)$ and $(A-B)$ are independent $\sigma^{2} \chi^{2}$ with $(k-1)$ and $(N-k)$ degrees of freedom and

$$
F=U \frac{N-k}{k-1}=\frac{\frac{B-c}{k-1}}{\frac{A-B}{N-k}}
$$

is an $F_{k-1, N-k}$. A large values of F leads to the rejection of H_{0} that $\mu_{1}=\cdots=\mu_{k}$.

Some times the population on which the treatments are tried is not uniform. For example each treatment i could be tried on the j-th group once leading to an observation $x_{i, j}$. The number of treatments is k and the number of groups is n, each group consisting of k observations. The total number of observations is $N=k n$. The model is that the observation $x_{i, j}$ is normally
distributed with mean $\mu_{i}+a_{j}$ and variance σ^{2}. Actually there is a redundancy of parameters here, and it is better to write the mean as $\mu+\mu_{i}+a_{j}$ with $\sum_{i} \mu_{i}=\sum_{j} a_{j}=0$ with a total of $n+k-1$ parameters. We are interested in testing the null hypothesis $\mu_{1}=\cdots=\mu_{k}=0$ and we really do not care about a_{1}, \ldots, a_{n}. With similar calculations we obtain

$$
\begin{aligned}
\hat{\mu}_{i} & =\frac{1}{N} \sum_{i, j} x_{i, j} \\
\hat{\mu}_{i} & =\frac{1}{n} \sum_{j} x_{i, j}-\hat{\mu} \\
\hat{a}_{j} & =\frac{1}{k} \sum_{i} x_{i, j}-\hat{\mu} \\
\sum_{i, j} x_{i, j}^{2} & =N \sigma_{1}^{2}+\left(k \sum_{i} \hat{\mu}_{i}^{2}-N \hat{\mu}^{2}\right)+\left(n \sum_{j} \hat{a}_{j}^{2}-N \hat{\mu}^{2}\right)+N \hat{\mu}^{2}
\end{aligned}
$$

If we define as before

$$
\begin{aligned}
T_{i} & =\sum_{j=1}^{n} x_{i, j} \\
S_{j} & =\sum_{i=1}^{k} x_{i, j} \\
T & =\sum_{i=1}^{k} T_{i}=\sum_{j=1}^{n} S_{j} \\
c & =\frac{T^{2}}{N} \\
A & =\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{i, j}^{2} \\
B & =\frac{1}{n} \sum_{i=1}^{k} T_{i}^{2} \\
C & =\frac{1}{k} \sum_{j=1}^{n} S_{j}^{2}
\end{aligned}
$$

We see that

$$
A=c+(B-c)+(C-c)+E=Q_{1}+Q_{2}+Q_{3}+Q_{4}
$$

where $E=N \sigma_{1}^{2}$ and $N \sigma_{0}^{2}-N \sigma_{1}^{2}=B-c$. The ratio

$$
F=\frac{\frac{B-c}{k-1}}{\frac{E}{(n-1)(k-1)}}
$$

is an $F_{k-1,(n-1)(k-1)}$. The proof that the various components of the sum of squares are independent χ^{2} s depends on two observations. First each term is of the form

$$
Q_{r}=\|\tilde{x}\|^{2}-\inf _{y \in X_{r}}\|\tilde{x}-y\|^{2}
$$

where \tilde{x} is the $N=n k$ dimensional vector $\left\{x_{i, j}\right\}$ and $\left\{X_{r}: r=1,2,3,4\right\}$ are orthogonal subspaces of R^{N}. If we show that X_{1}, X_{2}, X_{3} are mutually orthogonal then clearly X_{4} is the orthogonal complement of $X_{1} \oplus X_{2} \oplus X_{3}$. It is easily verified that

$$
\begin{aligned}
& X_{1}=\left\{\tilde{x}: x_{i, j} \equiv a \text { for all } i, j\right\} \\
& X_{2}=\left\{\tilde{x}: x_{i, j} \equiv a_{i} \text { for all } i, j \text { with } \sum_{i=1}^{k} a_{i}=0\right\} \\
& X_{3}=\left\{\tilde{x}: x_{i, j} \equiv a_{j} \text { for all } i, j \text { with } \sum_{j=1}^{n} a_{j}=0\right\}
\end{aligned}
$$

and that they are mutually orthogonal.

21 General Linear Models

General linear model is of the following form. There are unknown parameters $\sigma^{2}, \theta_{1}, \ldots, \theta_{k}$ and observations $x_{1}, x_{2}, \ldots, x_{n}$. The x_{i} are assumed to be independent and normally distributed with mean

$$
E\left[x_{i}\right]=\sum_{j=1}^{k} a_{i, j} \theta_{j}
$$

and variance σ^{2}. The factors $\left\{a_{i, j}\right\}$ are assumed to be known constants. The matrix A is assumed to be of rank k (otherwise we can reduce the number
of real parameters). The null hypothesis is that $\theta \in \Theta_{0}$, a linear subspace (hyperplane) of R^{k} of dmension $r<k$, specified by $k-r$ linear relations. The analysis depends on the two quantities

$$
\begin{aligned}
& Q_{1}=\inf _{\theta \in R^{k}}\|x-A \theta\|^{2} \\
& Q_{0}=\inf _{\theta \in \Theta_{0}}\|x-A \theta\|^{2}
\end{aligned}
$$

The ratio

$$
F=\frac{\frac{Q_{0}-Q_{1}}{k-r}}{\frac{Q_{1}}{n-k}}
$$

is an $F_{k-r, n-k}$. The actual minimization involves inverting the matrix $A^{*} A$ for the computation of Q_{1} and a similar one for the computation of Q_{0}. In the examples we discussed this is particularly easy.

Rather than discuss the general theory we will do some examples.

