
17 Paired t-test

Sometimes we have to deal with data that come in linked pairs. For example
initial weight and final weight for a grwoth harmone. We have observations
(xi, yi). They are very higly correlated. So if we want to test that the
harmone has no effect, or equivalently that means of {xi} and {yi} are the
same, we cannot afford to assume that {xi} and {yi} are independent. On
the other hand we can form the differences di = xi−yi and test for the mean
of {di} to be 0. This is now a simple t test.

18 Correlation and Regression

Often we have two related variables X and Y and only one of them say X
is observed. We would like to use the observed value of X to predict Y . If
we know the joint distribution of (X, Y ), we can determine the conditional
distribution of Y given X and use it as a guide to our prediction. The
expectation of the conditional distribution or the conditional expectation is
a reasonable guess regaridng what we might expect for Y .

The conditonal expectation has the property that it minimizes E[(Y −
f(X))2] over all functions f(X) that depend only on X.

In practice one often mnimizes E[(Y − f(X))2] over a specified limited
class of functions f(·). In linear regreesion one limits the choice of f to linear
functions of X of the form a + bX where a and b are constants.

The minimization
inf
a,b

E
[
(Y − a − bX)2

]
can be explicitly carried out. Differentiating with repect to a and b we get
the equations

E
[
(Y − a − bX)

]
= 0

E
[
(Y − a − bX)X

]
= 0

or

E
[
Y

]
= a + bE

[
X

]
E

[
XY

]
= aE

[
X2

]
+ bE

[
X

]
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Solving the equations for a and b we get

b̂ =
E

[
XY

] − E
[
X

]
E

[
Y

]
E

[
X2

] − (E
[
X

]
)2

=
Cov XY

Var X

â = E
[
Y

] − b̂E
[
X

]
We can therefore write the regression line as

Y − E
[
Y

]
=

Cov XY

Var X

[
X − E

[
X

]]
For any two random variables X and Y , the covariance is defined by
Cov [XY ] = E[XY ]−E[X]E[Y ]. Note that Cov [XX] = E[X2]−(E[X])2] =
Var [X].

One can decompose Y − E[Y ] as

Y − E[Y ] = b̂
[
X − E[X]

]
+ Y − â − b̂X

Because the cross term vanishes, we get

Var
[
Y

]
=

(
Cov

[
XY

])2

Var
[
X

]
Var

[
Y

]Var
[
Y

]
+

[
1 −

(
Cov

[
XY

])2

Var
[
X

]
Var

[
Y

]]
Var

[
Y

]
The linear correlation coefficient ρ between X and Y is defined as

ρ =
Cov

[
XY

]
√

Var
[
X

]√
Var

[
Y

]
We can rewrite the earlier relation as

Var
[
Y

]
= ρ2Var

[
Y

]
+ (1 − ρ2)Var

[
Y

]
The first term is the amount of reduction in the variance due to ”predictable”
and the second term is the residual variance. ρ2 is the proportion of the vari-
ance that is reduced and (1−ρ2) is the residual proportion. From Schwartz’s
inequality it is clear that −1 ≤ ρ ≤ 1.

If we have observations (xi, yi) from a bivariate population, we can es-
timate the means, variances and covariances by their corresponding sample
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values

x̄ =
1

n

∑
i

xi

ȳ =
1

n

∑
i

yi

s2
x =

1

n

∑
i

x2
i − x̄2

s2
y =

1

n

∑
i

y2
i − ȳ2

cx,y =
1

n

∑
i

xiyi − x̄ȳ

b̂ =
cx,y

s2
x

r =
cx,y

sxsy

These are clearly consistent estimators of the corresponding population val-
ues.

We can interchange the roles of X and Y and there is the regression line

X − E
[
X

]
=

Cov XY

Var Y

(
Y − E

[
Y

])
While both lines pass through

(
E

[
X

]
, E

[
Y

])
, they have in general different

slopes unless
Cov

[
XY

]
Var

[
X

] =
Var

[
Y

]
Cov

[
XY

]
or

ρ2 = 1

whch corresponds to an exact linear relation between X and Y .

19 Multivariate Normal Distributions

Just as the family of Normal distributions indexed by their means and vari-
ances play an important role in the study of real valued random variables, the
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multivariate normal distributions are central to the study of random vectors.
On Rd, a Normal distribution is specified by its probabilty density

f(x1, . . . , xd) = k exp[−1

2
Q(x1 − a1, . . . , xd − ad)]

where a = (a1, . . . , ad) is a location or centering parameter and Q(x) =
Q(x1, . . . , xd) is a positive definite quadratic form Q(x) =< x, Cx >=∑

i,j ci,jxixj determined by the symmetric matrix C = {ci,j}. The normaliz-
ing constant k is determined so that∫

Rd

f(x)dx = 1

Clearly by translation and orthogonal rotation the integral can be calculated
as

k

∫
Rd

exp[−1

2

d∑
i=1

λiy
2
i ]dy = (2π)

d
2 Πd

i=1

1√
λi

= 1

and

k = (
1

2π
)

d
2 Πd

i=1

√
λi = (

1

2π
)

d
2 (Det C)

1
2

Here λi are the eigenvlues of C so that Πd
i=1λi = Det C. Since f(x) is

symmetric around x = a, it is clear that∫
Rd

xif(x)dx = ai +

∫
Rd

(xi − ai)f(x)dx = ai

and thus {ai} are the means of the components {xi}. In order to calculate
the variances and covariances it is better to calculate the moment generating
function∫

Rd

exp[< θ, x >]f(x)dx

=

∫
Rd

k exp[−1

2
Q(x − a + C−1θ)] exp[< a, θ > +

1

2
Q(C−1θ)]

= exp[< a, θ > +
1

2
< C−1θ, θ >]

By differentiatig with respect to θi we can calculate

E
[
xi

]
= ai

E
[
xixj

]
= aiaj + c−1

i,j

Cov xixj = E
[
xixj

] − aiaj = c−1
i,j
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Where c−1
i,j is the i, jth entry of the inverse C−1 of C = {ci,j}. It is more

natural to parametrize the Multivariate Normal Distributions by their means
and covariances

{ai} = {E[
xi

]}
Σ = {σi,j} = {Cov xixj}

and the density takes the form

f(a, Σ, x) =
1

(
√

2π)d
√

Det Σ
exp[−1

2
< Σ−1(x − a), (x − a) >]

We hace assumed that Σ is positive definite. In general it only needs to be
positive definite. If Σ has rank r < d the normal distribution is degenerate
and lives on a hyperplane of dimension r and the density can be written
down relative to a choice of r coordinates on the hyperplane. If the rank is
0, then Σ = 0 and the Normal distribution degenrates to a point mass of 1
at the mean.

If d = 2, the covariance matrix Σ can be written as[
σ2

x ρ σxσy

ρ σxσy σ2
y

]

with Σ−1 given by

1

1 − ρ2

[
1
σ2

x
− ρ

σxσy

− ρ
σxσy

1
σ2

y

]

20 Testing for Correlation.

If we have n independent observations from a bivariate normal distribution
with means µx, µy, variances σ2

x, σ
2
y and correlation coeffeicient ρ one might

want to test that ρ = 0 The test naturally will be based on the statistic

r =
1
n

∑n
i=1 xiyi − x̄ȳ

sxsy

where sx and sy are the sample standard deviations of x and y. In order to
decide on the critical region we need to determine the distribution of r under
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the null hypothesis. Since r is unchanged by any change of origin and/or scale
of the observations, we can assume with out loss of generality that x1, . . . , xn

and y1, . . . , yn are two independent sets of independent observations from
the standard normal distribution with mean 0 and variance 1. Actually we
will assume that y1, . . . , yn are just arbitrary constants and show that the
distribution of r

√
n−2√

1−r2 is t with n−2 degrees of freedom no matter what these
constants are. Then as long as x’s and y’s are independent the distribution of
r
√

n−2√
1−r2 will be tn−2. If we denote by ai = yi−ȳ

sy
then

∑
ai = 0 and

∑
i a

2
i = 1.

r =

∑
aixi√
nsx

Let us change coordinates by an orthogonal transformation z = Sx with S
given by 


1√
n

1√
n

. . . 1√
n

a1 a2 . . . an

. . . . . . . . . . . .

. . . . . . . . . . . .




After the first two rows that form an orthonaormal set of 2 vectors the rest
of the matrix is completed to be orthogonal by selectiing the rows to form
a complete orthonormal set. In terms of zi, which are again independent
standard normals,

r =
z2√

z2
2 + · · ·+ z2

n

and
r
√

n − 2√
1 − r2

=
z2

√
n − 2√

z2
3 + · · ·+ z2

n

which has a t distribution wth n − 2 degrees of freedom.

21 Large Sample Tests for Correlation.

One can calculate the asymptotic diribution of r for large n, in the general
case of ρ 6= 0. If we define U1 = s2

x, U2 = s2
y and U3 = 1

n

∑
xiyi − x̄ȳ and

denote by a1, a2 and a3 their population values 1, 1 and ρ, {√n(Ui − ai)}
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have a joint normal distribution. The covariance matrix is easily calculated
to be

A =


 2 2ρ2 2ρ

2ρ2 2 2ρ
2ρ 2ρ 1 + ρ2




From

r =
U3√
U1U2

we see that
√

n(r − ρ) is asymptotically normal with variance < c, Ac >=
(1 − ρ2)2 with

c = (−ρ

2
,−ρ

2
, 1) = (

∂r

∂U1
,

∂r

∂U2
,

∂r

∂U3
)
∣∣
(1,1,ρ)

If we consider z = 1
2
log 1−r

1+r
with zρ = 1

2
log 1−ρ

1+ρ
then

√
n(z − zρ) is asymp-

totically normal with mean 0 and variance 1.

22 Confidence Intervals.

A confidence interval at level α is a random interval I such that Pθ[θ ∈ I] ≥ α
for all θ. For example if X1, ldots, Xn are n independent observations from
N(µ, σ2) an interval of the form [x̄ − ks, x̄ + ks] contains µ if | x̄−µ

s
| ≤ k.

The distribution of x̄−µ
s

√
n − 1 is a t with n − 1 degrees of freedom. We

can determine kα,n from th e tables so that P [| x̄−µ
s
| ≤ k] = α. The interval

[x̄−skα,n , x̄+skα,n] works. Essentially the interval consists of all the possible
values of the parameter θ for which the null hypothesis that the true value is
θ is not rejected at 1−α level of significance. In large samples the confidence
intervals look like [θ̂− kα√

n
σ, θ+ kα√

n
σ], where kα is determined from the normal

table and σ = σ(θ̂) is the variance of the limiting normal distribution of√
n(θ̂ − θ).
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