
12 Testing of Hypotheses.

The simplest kind of a testing of hypothesis is when we have two possible
alternate models and based on the sample have to make a choice between
them.

Suppose f0(x) and f1(x) are two possible densities on R and we have an
observation x. We have to make a choice between the two. The null hy-
pothesis says that f0 is the true density. The alternate hypothesis says
that f1 is the true density. A decision procedure has to be of the following
form. A region Ω called the critical regionis picked. If x ∈ Ω we are crit-
ical of the null hypothesis and reject it in favor of the alternate. If x /∈ Ω
we accept the null hypothesis. The probability α =

∫
Ω

f)(x)dx of rejecting
the null hypothesis when it is true is called the type I error or size. The
probability β =

∫
Ωc f1(x)dx of accepting the null hypothesis when it is false

is called the type II error. 1 − β =
∫
Ω

f1(x)dx which is the probability of
detecting that the null hypothesis when it is really false is called the power
of the test. Clearly we would like to minimize

∫
Ω

f0(x)dx while at the same
time maximizing

∫
Ω

f1(x)dx. This procedure of accepting or rejecting the
null hypothesis based on observations is called a test or a test of hypoth-
esis. In our contest each choice of Ω provides a diffrent test for the same
problem of deciding to either accept f0 or reject it in favor of f1.

We would like both α and β to be as small as possible. Of course there
is a conflict. Minimizing α suggests making Ω small and making β small on
the other hand needs Ω to be large. There has to be a trade off.

We cannot compare two tests that have different type I errors. If Ω1 and
Ω2 are two different tests with the same size Ω1 is called more powerful
than Ω2 if ∫

Ω1

f2(x)dx ≥
∫

Ω2

f2(x)dx

while

α =

∫
Ω1

f1(x)dx =

∫
Ω2

f1(x)dx

A test Ω of size α is said to be most powerful if it is more powerful than
any other test of the same size.

The Neyman-Pearson lemma provides a way of making the right choice
of Ω.
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Theorem 12.1 (Neyman-Pearson Lemma). Consider the family of sets

Aλ = {x :
f2(x)

f1(x)
≥ λ}

Bλ = {x :
f2(x)

f1(x)
> λ}

Any Ω such that Aλ ⊃ Ω ⊃ Bλ for some λ > 0 is a most powerful test.

Proof. Let Ω be such that Aλ ⊃ Ω ⊃ Bλ for some λ > 0. Let the size of Ω
be α. Let Ω1 be any test of size α. We will prove that Ω is more powerful
than Ω1. ∫

Ω

f2(x)dx −
∫

Ω1

f2(x)dx =

∫
Ω∩Ωc

1

f2(x)dx −
∫

Ωc∩Ω1

f2(x)dx

≥ λ

∫
Ω∩Ωc

1

f1(x)dx − λ

∫
Ωc∩Ω1

f1(x)dx

= λ

∫
Ω

f1(x)dx − λ

∫
Ω1

f1(x)dx

= λα − λα = 0

We can have two probability distributions p0(x) and p1(x) instead of densities
and nothin really changes except that the integrals are replaced by sums.

Examples.

1. Suppose we have n independent observations from a normal population
with mean µ and variance 1. The null hypothesis is that µ = 0 and the
alternate µ = 1.

log
f1(x1, . . . , xn)

f0(x1, . . . , xn)
=

1

2

∑
i

x2
i −

1

2

∑
i

(xi − 1)2 =
∑

i

xi − n

2

Uniformly most powerful critical regions can be written in the form√
nx̄ ≥ a. Since the distribution of

√
nx̄ under the null hypothesis is

the normal distribution with mean 0 and variance 1, we pick a such
that the size is α

1√
2π

∫ ∞

a

e−
x2

2 dx = α

medskip
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2. Suppose we have n independent observations from a normal population
with mean µ and variance 1. The null hypothesis is that µ = 0 and the
alternate µ = 2.

log
f1(x1, . . . , xn)

f0(x1, . . . , xn)
=

1

2

∑
i

x2
i −

1

2

∑
i

(xi − 2)2 = 2
∑

i

xi − 2n

Uniformly most powerful critical regions can again be written in the
form

√
nx̄ ≥ a. Since the distribution of

√
nx̄ under the null hypothesis

is the normal distribution with mean 0 and variance 1, we pick a such
that the size is α

1√
2π

∫ ∞

a

e−
x2

2 dx = α

In fact the test does not care if µ = 1 or 2. So long as the alternative
is any µ > 0 we have the same family of most powerful tests.

3. Suppose we have n independent observations from a normal population
with mean µ and variance 1. The null hypothesis is that µ = 0 and the
alternate µ = −1.

log
f1(x1, . . . , xn)

f0(x1, . . . , xn)
=

1

2

∑
i

x2
i −

1

2

∑
i

(xi + 1)2 = −
∑

i

xi − n

2

Uniformly most powerful critical regions can now be written in the form√
nx̄ ≤ a. Since the distribution of

√
nx̄ under the null hypothesis is

the normal distribution with mean 0 and variance 1, we pick a such
that the size is α

1√
2π

∫ a

−∞
e−

x2

2 dx = α

In fact the family of most powerful tests depend only on the sign of the
alternative µ.

4. Suppose we have n independent observations from a normal population
with mean 0 and variance θ. The null hypothesis is that θ = 1 and the
alternate θ = 2.

log
f1(x1, . . . , xn)

f0(x1, . . . , xn)
= −n

2
log θ +

1

2
(1 − 1

θ
)
∑

i

x2
i
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The most powerful critical regions look like
∑

i x
2
i ≥ a. Now we need

the distribution of S =
∑

i x
2
i . It is the Gamma distribution with α = 1

2

and p = n
2
. It has a special name. It is called the chi-square distribution

with n degrees of freedom. The level a is detrmined from the size α by

α =
1

2
n
2 Γ(n

2
)

∫ ∞

a

e−
x
2 x

n
2
−1dx

5. Similarly if the alternate is some θ < 1 the most powerful critical
regions looks like

∑
i x

2
i ≤ a. We still need the chi-square distribution,

but determine a so that

α =
1

2
n
2 Γ(n

2
)

∫ a

0

e−
x
2 x

n
2
−1dx

6. We look at some discrete distributions. We tossed a coin n times and
obtained x heads. Is p = 0.5 or is it 0.7?

log
p1(x)

p0(x)
= x log

0.7

0.5
+ (n − x) log

0.3

0.5

The critical regions of interest are of the form x ≥ k and k is determined
so that

∑
x≥k

(
n

x

)
(0.5)n = α

This may not always be possible. Because we can change k only by
integers and the probability may jump over α with out matching it.
Usually this is not important. If we get to some α that is close enough
that should be satisfactory. There is nothing special about the exact
value of α. It should be small, because we do not want to change our
beliefs on flimsy evidence. In practice one takes it to be 0.05 or 0.01.
It is some times called the level of significance. If we really have
to match it we need a fuzzy set. Maybe with k − 1 we have α1 > α
and with k we have α2 < α. We do not need all of k − 1 but only
a fraction α−α2

α1−α2
of k − 1. But you cannot divide a point. If we get
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the observation k− 1 our action is fuzzy or randomized. We perform a
totally irrelevent random experiment (like generating random numbers)
and based on its outcome, reject with probability α−α2

α1−α2
. Now the size is

matched. One can prove a variant of the Neyman-Pearson lemma that
among randomized tests this is the best. In other words we randomize
only at the very edge to match the size.

More generally if we have a family {Pθ : θ ∈ Θ} of possible models the
null hypothesis may be that θ ∈ Θ0 and the alternative θ ∈ Θ1 = Θ\Θ0. The
null hypothesis is said to be simple if Θ0 consists of a single point θ0. The
alternative is similarly simple if Θ1 consists only of one point θ1. So far we
have cosidered testing a simple hypothesis agianst a simple alternative. Any
hypothesis that is not simple is called composite.

While testing a simple hypothesis agianst a composite alternative, if it
happens that the most powerful test of a given size α aginst the alternative θ1

determined by the Neyman-Pearson lemma, is independent of θ1 ∈ Θ1, then
we say we have a uniformly most powerful test against all the alternatives in
Θ1. It does not always exist. But it might. In the examples we considred if
the alternative is on one side of the null hypothesis, then UMP tests exist.
For two sided alternatives they usually do not.

For example if we are to test from a normal ppulation with mean µ
and variance 1, the null hypothesis H0 = {µ = 0} against the alternative
H1 = {µ > 0} critical regions of the form

√
nx̄n > a will yield UMP tests. If

on the other hand the alternative is H1 = {µ 6= 0} we do not have any UMP
tests. In practice one settles for a critical region of the form |√nx̄n| > a.

For any test the function P (θ) = Pθ[Ω] is the power. Its value at θ0 is the
type I error or size. It is a measure of our ability to detect deviations from
the null hypothesis. Since P (θ) is usually continuous in θ the power is close
to the size α if θ ∈ Θ1 is close to θ0. On the other hand if Pn(θ) is the power
of a good test based on n observations, it will happen that if we fix the size
α, Pn(θ) → 1 as n → ∞ for any θ 6= θ0.

Notice that in the example of testing for the mean of the normal popula-
tion µ = 0 against the two sided alternative µ 6= 0, if we use a region of the
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form |√nx̄n| > a, the level a is independent of n. The power is given by

Pn(µ) = Pµ[|√nx̄n| > a]

=
1√
2π

∫
|x|>a

e−
(x−√

nµ)2

2 dx

=
1√
2π

∫
|x+

√
nµ|>a

e−
x2

2 dx

= Φ(−a −√
nµ) + 1 − Φ(a −√

nµ)

→ 1

if n → ∞ as long as µ 6= 0.

13 Composite Null Hypothesis.

The situation is more complex if the null hypothesis is composite and takes
the form H0 = {θ ∈ Θ0}. To find a critical region of size α we must find
Ω such that Pθ(Ω) ≡ α for θ ∈ Θ0. This may not be possible. It is more
reasonable to insist only that Pθ(Ω) ≤ α for θ ∈ Θ0. So we defne the size as

α = sup
θ∈Θ0

Pθ(Ω)

But it is some times possible to find a test which is at the same level α.
This often requires finding a statistic U whose distribution is the same for all
θ ∈ Θ0. Then a test based on this statistic would serve the purpose. In many
problems there are such natuaral statistics. Let us look at some examples.

Examples.

1. Suppose x1, . . . , xn are n independent observations from a normal pou-
lation with mean µ and variance θ. We want to test the null hypothesis
that µ = 0 against the alternative µ > 0. We can not use just

√
nx̄n

because its distribution will involve θ an unknown parameter. If s2 is
the sample variance

s2 =
1

n

∑
i

(xi − x̄n)2 =
1

n

∑
i

x2
i − [

1

n

∑
i

xi]
2 (13.1)

then the quantity
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t =
x̄n

s

√
n − 1

is called the Student’s ‘t ’statistic with n − 1 degrees of freedom.
Its probability distribution is independent of θ and the density of the
Student’s t distribution with k degrees of freedom is given by

fk(t) =
ck

(1 + t2

k
)

k+1
2

where the normalizing constant ck is easily evaluated.

c−1
k =

∫ ∞

−∞

dt

(1 + t2

k
)

k+1
2

=
√

k

∫ ∞

0

dt√
t(1 + t)

k+1
2

=
√

k

∫ 1

0

u− 1
2 (1 − u)

k
2
−1du =

√
k β(

1

2
,
k

2
).

For the two sided alternative one uses the same statistic, but a critical
region of the form |t| > a.

2. Suppose we have n observations from a normal poulation with mean
µ and variance θ and we are interested in testing the composite null
hypothesis θ = 1 against θ > 1. We would use the statistic of sample
variance defined in (13.1). The distribution of ns2 is a chi-square with
n − 1 dgrees of freedom. We would use a critical region of the form
ns2 > a.

3. Suppose we have two sets of independent obsrvations from two normal
poulations x1, . . . , xn1 and y1, . . . , yn2 from two normal poulations with
means µ1 and µ2 and variances θ1 and θ2. The null hypothesis is θ1 = θ2

and the alternate may be θ2 > θ1. The ‘F ’statistic is used here.

F =
n1s

2
1

n2s
2
2

(n2 − 1)

(n1 − 1)

has an F - distribution with n1 − 1 and n2 − 1 degrees of freedom. We
will of course use a critical region of the form F < a.
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14 Sampling Distributions.

It is clear that in designing tests based on various statistics, the distribution of
these statistics become relevent. We will now collect some commonly known
facts, mostly about statistics based on observations from normal populations.

1. If x is normally distributed with mean µ and variance θ = σ2, then
the distribution of y = x−µ

σ
is the normal with mean 0 and variance 1,

which is often called the standard normal.

2. If x1, . . . , xn are independent normals with mean µ and variance σ2

any linear combination
∑

i aixi is again normal with mean (
∑

i ai)µ
and variance (

∑
i a

2
i )σ

2.

3. Any ai with
∑

i ai has a normal distribution with mean 0 and variance
(
∑

i a
2
i )σ

2. In particular the distribution is independent of µ. Such
linear functions are called contrasts.

4. The square of a standard normal is a Gamma(1
2
, 1

2
).

P [x2 ≤ a] = 2

∫ √
a

0

1√
2π

e−
x2

2 dx

Differentiate with repect to a to obtain the correct Gamma density.

5. The sum of two independent random variables with distributions
Gamma (α, k1) and Gamma (α, k2) is distributed according to
Gamma (α, k1 + k2). The best way to see this is to use generating
functions

αk

Γ(k)

∫ ∞

0

e−λxe−αxxk−1dx =
αk

(α + λ)k

For an independent sum the generating function is the product of the
individual generating functions.

6. Therefore the sum os squares of n standard normals is a Gamma (1
2
, n

2
)

which is called a chi-square with n degrees of freedom. The degrees of
freedom refers to the number of independent normals that have been
squared and added. It is written as χ2

n. Note that E[χ2
n] = n.
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7. If we start from n independent standard normals and make an orthog-
onal linear transformation yi =

∑n
j=1 ai,jxj then the {yi} are again

independent standard normals. To see this we use the fact

1

(
√

2π)n
exp[−1

2

∑
x2

i ]Πdxi =
1

(
√

2π)n
exp[−1

2

∑
y2

i ]Πdyi

8. In particular we can take a1,j = 1√
n

for all j, and complete the rest of

the matrix {ai,j} in any manner to be orthogonal. Then y1 =
√

nx̄n

and
∑n

2 y2
i =

∑n
1 y2

i − y2
1 =

∑n
1 x2

i − nx̄2
n = ns2, where s2 is the sample

variance (13.1). In particular x̄n and ns2 are independent and the
distribution of ns2 is a chi-square with n − 1 degrees of freedom.

9. If we assume that x1, . . . , xn are normal with mean µ and variance 1,
since y2, . . . , yn are contrasts, the distribution of y2, . . . , yn and ns2 are
independent of µ.

10. The distribution of tk = xr
χ2

k
k

= x√
χ2

k

√
k can be calculated. We start

with

f(x, S) =
1√
2π

1

2
k
2 Γ(k

2
)
e−

x2

2 e−
S
2 S

k
2
−1dxdS

which is the joint distribution of a standrad normal x and S which is a
χ2 with k degrees of freedom. We make a transformation from (x, S)

to (t, S) where x = t[S
k
]
1
2 . The joint density of t and S is given by

f(t, S)dtdS =
1√

k
√

2π

1

2
k
2 Γ(k

2
)
e−

t2S
2k e−

S
2 S

k−1
2 dtdS

If we integrate S out, we get the density of t as,

f(t)dt =
Γ(k+1

2
)√

k
√

πΓ(k
2
)

1

(1 + t2

k
)

k+1
2

dt

=
1

β(1
2
, k+1

2
)

1

(1 + t2

k
)

k+1
2

dt√
k

which the density of a ‘t’ with k degrees of freedom.
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11. We note that if x1, . . . , xn are independent normals with mean 0 and
variance σ, we can replace xi by yi = xi

σ
and since t is scale invariant

the distribution of t does not depend on σ.

12. Suppose we have two independent sets of observations from two normal
populations with the the same variance, but perhaps with different
means. Their sizes are n1 and n2 respectively and the two sample

variances are s2
1 and s2

2. The ‘F ’ is the ratio F =
n1s21
n1−1

n2s2
2

n2−1

It is of the form

F =
S1
k1
S2
k2

where S1 and S2 are two independent chi-squares with k1 and

k2 degrees of freedom. We can compute the density of Fk1,k2. We begin
with

f(S1, S2)dS1dS2 =
1

2
k1+k2

2 Γ(k1

2
)Γ(k2

2
)
e−

1
2
(S1+S2)S

k1
2
−1

1 S
k2
2
−1

2 dS1dS2

We change variables from (S1, S2) to (U = S1

S2

k2

k1
, S2) to get the joint

density

f(U, S2)dUdS2 = ck1,k2e
− 1

2
(U

k1
k2

S2+S2)U
k1
2
−1S

k1+k2
2

−1

2 dS1dS2

where ck1,k2 is the normalizing constant that we will not bother to keep
track of. Integrating S2 out produces the density of F distribution that
depends on two parametrs k1 and k2.

fk1,k2(U) = c′k1,k2

U
k1
2
−1

(1 + k1

k2
U)

k1+k2
2

15 Testing Composite Hypotheses.

In general if we have a composite null hypothesis of the form θ ∈ Θ0 that
we want to test a statistic that is often reasonable is the likelihood ratio
criterion defined below.

λ =
supθ∈Θ0

L(θ, x)

supθ∈Θ L(θ, x)
(15.1)
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Clearly 0 < λ ≤ 1 and smaller the value of λ the less confident we are of our
null hypothesis. Therefore the critical region is of the form λ ≤ c.

Let us look at a few examples.

1. Suppose we have n observations from N(µ, σ2) and we want to test
µ = 0 against the alternative µ 6= 0.

L(µ, σ2, x1, . . . , xn) =
1

(
√

2πσ)n
exp[− 1

2σ2

∑
i

(xi − µ)2]

Under the null hypothesis the MLE for σ2 is σ̂2 = 1
n

∑
i x

2
i . and the

maximum of L is

L(0, σ̂2, x1, . . . , xn) =
1

(
√

2πS)n
exp[−n

2

where S =
√

1
n

∑
i x

2
i . A similar calculation with out any assumptions

on µ gives µ̂ = x̄n and σ̂ = s =
√

1
n

∑
i(xi − x̄n)2. This provides

L(µ̂, σ̂2, x1, . . . , xn) =
1

(
√

2πs)n
exp[−n

2
]

so that

λ = [
s

S
]n

We can use any monotonic functnction of λ and

|t| = | x̄n

s
|√n − 1 =

√
S2 − s2

s2

√
n − 1 =

√
λ− 2

n − 1
√

n − 1

is a monotonic decreasing function of λ.

2. Suppose we have n1 observations from N(µ1, σ
2
1) and n2 observations

from N(µ2, σ
2
2). We wish to test σ2

1 = σ2
2. A similar calculation yields

λ =
sn1
1 sn2

2

Sn1+n2
=

Rn1

(n2+n1R2

n2+n1
)

n1+n2
2

where s2
1 and s2

2 are the two sample variances, S2 =
n1s2

1+n2s2
2

n1+n2
and λ is

written as function of the ratio R = s1

s2
which leads to the F test. Note

that because λ is not monotone in R, the region λ < c splits into two
regions R < r0 and R > r1 giving us a two sided critial region for the
F test.
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16 Large Sample Tests.

When we have to test a simple hypothesis that θ = θ0 against an alternative
that may be one or two sided, it is natural to base the test on the maximum
likelihood estimator θ̂n of θ based on n independent observations. We can
look at the statistic

Un =

√
n(θ̂n − θ0)

I(θ̂n)

The consistency of θn and the asymptotic normality of
√

n(θ̂n−θ0) imply
that the distrbution of Un converges to N(0, 1) as n → ∞. We can base our
tests on Un.

Suppose we have a set of m parameters θ = {θ1, . . . , θm}, and we want
to test the composite hypothesis H0 = {θ : θ1 = θ2 = · · · = θk = 0}
against the alternative that at least one of them is nonzero. The remaining
m−k parameters are some times called nuisance parameters. We can obtain
maximum likelihood estimators θ̂1, . . . , θ̂m for all the parameters, based on n
observations. With out loss of generality we can assume that the true value
of all the parameters are 0. It is natural to base the test on Uj =

√
nθ̂j and

take as critical region a set D in Rm and reject the null hypothesis if U =
(U1, . . . , Um) ∈ D. The joint distribution of the full set U = (U1, . . . , Um)
is asymptotically the m variate normal N(0, I−1(0)). If we take J(0) as the
square root of I−1(0), then V = J(θ̂)U has for its asymptotic distribution the
standard multivariate normal N(0, I). On Rm we have the m−k dimensional
subspace S = {U1 = U2 = · · · = Uk = 0}. We need to measure how far U is
from being in S and the D will consist of points that are too far away. The
obvious step is to use orthogonal projections and define

Z = inf
u∈S

‖J(θ̂)(U − u)‖2 ' inf
v∈J0S

‖V − v‖2

If X is distributed as a mutivariate normal N(0, I) on Rm, then ‖X‖2 =∑
i x

2
i is distributed as a chi-square with m degrees of freedom. Suppose S

is any subspace of dimension m − k, we can choose orthonormal coorinates
{yi} such that S = {y : y1 = y2 · · · = yk = 0} and

Z = inf
u∈S

‖x − u‖2 =

k∑
i=1

y2
i
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is distributed as a chi-square with k degrees of freedom. We therefore con-
clude that asymptotically Z is a chi-square with k degrees of freedom. The
critical region could then be of the form Z > c.

In fact far large samples the likelihood ratio criterion produces a test
statistic of the form.

− log λ = sup
θ∈Θ

∑
i

log L(θ, xi) − sup
θ∈Θ0

∑
i

log L(θ, xi)

=
∑

i

log L(θ̂n, xi) − sup
θ∈Θ0

∑
i

log L(θ, xi)

' inf
θ∈Θ0

−1

2

∑
1≤r,s≤m

[
1

n

∑
i

∂2 log L(θ, xi)

∂θr∂θs
]θ=0

√
n(θ̂r

n − θr)
√

n(θ̂s
n − θs)

' inf
u∈S

1

2
< I(0)(U − u), (U − u) >

= inf
v∈J(0)S

1

2
< (V − v), (V − v) >

Therefore −2 log λ is asymptotically a chi-square with k degrees of freedom.
Examples.

1. Multinomial Ditributions. Suppose we have categorical data of size
N , divided into k categories with observed frequenies {fi : 1 ≤ i ≤ k}
adding up to N . We want to test that the probabilties for the individual
categories are given by {pi : 1 ≤ i ≤ k}. The multinomial likelihood is

L(π1, π2, . . . , πk) =
N !

n1!n2! . . . nk!
πf1

1 · · ·πfk

k

The MLE are π̂i = fi

N
.

−2 log λ = 2
∑

fi log π̂ − 2
∑

i

fi log pi

= N
∑

i

(π̂ − pi)
2

pi

=
∑

i

f 2
i

Npi
− N
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is a chi-square with (k − 1) degrees of freedom.

2. Goodness of fit. Here we want to test that πi = πi(θ) for some
value of θ, where the functions πi(·) are given. H0 is the range of
{πi(θ)} as θ varies over the admissible values. Calculate the MLE for
θ from the likelihood function

L(θ, f1, . . . , fk) =
N !

n1!n2! . . . nk!
π1(θ)

f1 · · ·πk(θ)
fk

Computation yields again

−2 log λ =
∑

i

f 2
i

Nπ(θ̂)
− N

which is now a chi-square with k− i− d degrees of freedom, where d is
the dimension of the space pf parameters d.

2. Testing for Associaton. Suppose we have data in a two-way classi-
fication. Say for example a sample of size N classified into 9 categories
according to two types of classification. One for smoking habits (no or
light, moderate, heavy) and the other for respiratory problems (light
or none, fair amount, serious). The frequencies fi,j are obtained from
a study. The tobacco industry claims that if there is any association
it is due to chance. How do you test? We use the multinomial model
with πi,j for probabilities, which is 8 dimensional. Under null hypoth-
esis πi,j = piqj, that claims that statistiaclly, smoking and respiratory
problems have nothing to do with each other. The null hypothesis
is described by 4 parameters. Our goodness of fit statistic will be a
chi-square with 4 degrees of freedom.

3. Two-by-two table. Here we have just four frequencies arranged in a
two-by-two table

f11 f12

f21 f22

A calculation shows that the statistic χ2 with 1 degree of freedom is
equal to

N(f11f22 − f12f21)
2

(f11 + f12)(f11 + f21)(f12 + f22)(f21 + f22)
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