1. P and Q are absolutely continuous with respect to $P+Q \cdot g_{n}=\left.\frac{d P}{d(P+Q)}\right|_{\mathcal{P}_{n}}=\frac{f_{n}}{f_{n}+1}$ has a limit $g=\left.\frac{d P}{d Q}\right|_{\Sigma}$ as $n \rightarrow \infty .0 \leq g \leq 1$. $g=0$ on X_{3} and $g=1$ on X_{1} with $0<g<1$ on X_{2}. If $g_{n}=\frac{f_{n}}{f_{n}+1}$ then $f_{n}=\frac{g_{n}}{1-g_{n}}$ tends to $f=\frac{g}{1-g} . g=1$ on X_{1} so $f=\infty$.
2. Let is take a large k_{0} so that the inequality

$$
P_{i, i+1} U(i+1)+P_{i, i} U(i)+P_{i, i-1} U(i-1) \leq U(i)
$$

is valid for $i \geq k_{0}$. Let $\tau_{N, k_{0}}$ be the hitting time of $\left[k_{0}, N\right]$. The for $k>k_{0}, u\left(X_{n}\right)$ is a super-martingale. Therefore

$$
P_{k}\left[X_{\tau_{N, k_{0}}}=k_{0}\right] U\left(k_{0}\right)+P_{k}\left[\tau_{N, k_{0}}=N\right] U(N) \leq U(k)
$$

In particular

$$
P_{k}\left[X_{\tau_{N, k_{0}}}=k_{0}\right] U\left(k_{0}\right) \leq U(k)
$$

Letting $N \rightarrow \infty$,

$$
P_{k}\left[\tau_{k_{0}}<\infty\right] \leq \frac{U(k)}{U\left(k_{0}\right)}
$$

Since $U(k) \rightarrow 0$, this proves transience.
Let us try and solve

$$
U(i+1)\left(\frac{1}{2}+\frac{a}{i}\right)+U(i-1)\left(\frac{1}{2}-\frac{a}{i}\right)=U(i)
$$

with $v(i)=U(i+1)-U(i)$, we have

$$
v(i)\left(\frac{1}{2}+\frac{a}{i}\right)=V(i-1)\left(\frac{1}{2}-\frac{a}{i}\right)
$$

or

$$
\frac{v(i)}{v(i-1)}=\frac{\left(\frac{1}{2}-\frac{a}{i}\right)}{\left(\frac{1}{2}+\frac{a}{i}\right)}=\frac{\left(1-\frac{2 a}{i}\right)}{\left(1+\frac{2 a}{i}\right)} \simeq\left(1-\frac{4 a}{i}\right)
$$

This gives

$$
v(i) \simeq \frac{1}{i^{4 a}}
$$

If $4 a>1$, then $\sum_{i} v(i)<\infty$ and one can fix it so that $U(i) \rightarrow 0$ as $i \rightarrow \infty . U(k)=$ $\sum i=k^{\infty} v(i)$ will do it. If $4 a=1$, then $U(k) \simeq \log k$ and this will give recurrence.
3. No matter what α is this is rotation and preserves arc length. If α is rational it is NOT ergodic. If α is irrational then, the proof of ergodicity depends on showing for $f \in L_{2}(\mu)$

$$
\frac{1}{n} \sum_{j=1}^{n} f\left(T^{j} z\right) \rightarrow \int f d \mu
$$

where μ is the normalized arc length. Trivial if $f=1$. Enough to show for a dense set. Therefore enough to show for $f=e^{i k \theta}$. In that case it reduces to

$$
\frac{1}{n} \sum_{j=1}^{n} e^{i k j \alpha} \rightarrow 0
$$

which is true if $e^{i k \alpha} \neq 1$ for $k \neq 0$, i.e. α is irrational.
4. The proof proceeds just like the usual case. First prove it for $f \in L_{2}(P)$. If \mathcal{H}_{n} are decreasing subspaces in a Hilbert space with $\mathcal{H}_{n} \downarrow \mathcal{H}_{\infty}$, then the projections π_{n} converge to π_{∞}. This is converted to the increasing case by orthogonal complementation. Since L_{2} is dense in every L_{p} for $1 \leq p<\infty$, and the conditional expectation is a contraction in every L_{p} including $p=1$, every (reverse) martingale converges in L_{p} if we start with $f \in L_{p}$ so long as $1 \leq p<\infty$. The almost sure convergence is a consequence of Doob's inequality that will givea bound and the upcrossing inequality which will control the oscillations.

