$\left\{X_{n}\right\}$ is a Markov Chain on the integers $i=0,1, \ldots$ with transition probabilities

$$
p(i, j)=e^{-i} \frac{i^{j}}{j!}
$$

This is an example of a branching process, where each member of the current generation has a random number of offsprings distributed according to a Poisson distribution with parameter 1 , and the number of offsprings is independent for different members. Then the population size at generation $k+1$ is distributed according to a Poisson with parameter i if the size of the population is i in the k-th generation.

1) Show that the population eventually dies out with probability 1. i.e

$$
P\left[X_{n}=0 \text { for some } n\right]=1 .
$$

Of course if $X_{n}=0$ then $X_{m}=0$ for $m \geq n$.
Let us start with a large population of size $N x$. Consider the population size $X_{N t}$ at time $N t$ and define $x_{N}(t)=\frac{X_{N t}}{N}$.
2) Show that as $N \rightarrow \infty$ there is a limiting process $x(t)$ of the "size" which is the diffusion with generator

$$
\frac{x}{2} \frac{d^{2}}{d x^{2}}
$$

starting from $x(0)=x$.
Consider the evolution of k such populations independently of each other with generator

$$
\frac{1}{2} \sum_{i=1}^{k} x_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

3) Show that $S(t)=\sum_{i=1}^{k} x_{i}(t)$ is a Markov process and find its generator.
4) Show that $y(t)=\left\{y_{i}(t): 1 \leq i \leq k\right\}$ where $y_{i}(t)=\frac{x_{i}(t)}{S(t)}$ lives on the simplex

$$
D=\left\{y: y_{i} \geq 0, \sum_{i} y_{i}=1\right\}
$$

is Markov and find its generator.
5) Show that the process $y(t)=\left\{y_{i}(t)\right\}$ moves successively through faces, one dimension lower each time until it reaches some vertex P_{i} with $y_{i}=1$ and $y_{j}=0$ for $j \neq i$ and then stays there for ever.
6) Find the probability $u_{i}(y)$ that the process is absorbed at the vertex P_{i}, if it starts from $y=\left(y_{1}, \ldots, y_{k}\right)$.
7) If τ is the time of absorption at a vertex calculate $m(y)=E_{y}[\tau]$.

Hint. The hardest part perhaps is to show that the process does not lose two dimensions at the same time. i.e hits an 'edge' rather than a face. This amounts to proving that with $k=2$ the process corresponding to

$$
\frac{1}{2} \sum_{i=1}^{2} x_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}
$$

does not exit from $x_{1}>0, x_{2}>0$ at $(0,0)$. If τ_{i} is the exit time $\tau_{i}=\inf \left\{t: x_{i}(t)=0\right\}$ we have to show $P_{x_{1}, x_{2}}\left\{\tau_{1}=\tau_{2}\right\}=0$. Since τ_{1} and τ_{2} are independent this amounts to showing that τ, the hitting time of 0 for the one dimensional process

$$
\frac{x}{2} \frac{d^{2}}{d x^{2}}
$$

has a continuous distribution function. There is a trick for proving it. Let τ_{a} be the hitting time of a and for $b>a$ let

$$
f(\lambda, b, a)=E_{b}\left[e^{-\lambda \tau_{a}}\right]
$$

Then for $c>b>a$ by the strong Markov property $f(\lambda, c, a)=f(\lambda, c, b) f(\lambda, b, a)$. More over $f(\lambda, x, a)$ is the solution of

$$
\frac{x}{2} \frac{d^{2} f}{d x^{2}}=\lambda f
$$

with $f(\lambda, a, a)=1$. Therefore $f(\lambda, b, a)=f(1, \lambda b, \lambda a)$. In particular

$$
f(\lambda, x, 0)=f\left(\lambda, x, \frac{x}{2}\right) f\left(\frac{\lambda}{2}, x, 0\right)
$$

The distribution function $F_{x}(t)$ of τ_{0} under P_{x} satisfies

$$
F_{x}(t)=F_{\frac{x}{2}}(t) * G_{x}(t)=F_{x}(2 t) * G_{x}(t)
$$

where G_{x} is the distribution function of $\tau_{\frac{x}{2}}$ under P_{x}. This shows that the biggest jump $j(x)$ in the distribution function $F_{x}(t)$ has to be 0 . An alternate method is to construct a barrier, i.e a function $U\left(x_{1}, x_{2}\right) \geq 0$ satisfying

$$
\frac{1}{2} \sum_{i=1}^{2} x_{i} \frac{\partial^{2} U}{\partial x_{i}^{2}}=0
$$

which blows up near $(0,0)$. Then the process cannot approach $(0,0)$. Such a function will not be smooth as x_{1} or x_{2} tend to 0 . One can construct such a U by separation of variables by trying

$$
U\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right)^{-\alpha} f\left(\frac{x}{x+y}\right)
$$

and solving an ODE for f. This is a model for several non competing species, with no advantage for any and they disappear due to chance, one species at a time, until only one survives. $x(t)$ describes the total sizes and $y(t)$ the proportions.

