L_{p} spaces are uniformly convex.

The case $p \geq 2$.
Lemma: Given $p \geq 2$, there exists a constant $c=c(p)>0$ such that for all real numbers f, g

$$
\left|\frac{f+g}{2}\right|^{p}+c\left|\frac{f-g}{2}\right|^{p} \leq \frac{|f|^{p}}{2}+\frac{|g|^{p}}{2}
$$

Proof: It is valid with $c=1$ if $f=0$. We can assume with out loss of generality that $f>0$. Dividing through by f and denoting $\frac{f}{g}$ by x, we need

$$
\left|\frac{1+x}{2}\right|^{p}+c\left|\frac{1-x}{2}\right|^{p} \leq \frac{1}{2}+\frac{|x|^{p}}{2}
$$

or

$$
F(x)=\frac{1}{2}+\frac{|x|^{p}}{2}-\left|\frac{1+x}{2}\right|^{p} \geq c\left|\frac{1-x}{2}\right|^{p}=G(x)
$$

for $-\infty<x<\infty$. Clearly $F(x)>0$ unless $x=1$ when $F(1)=0$. Check that $F^{\prime \prime}(1)=$ $\frac{p(p-1)}{4}>0 . G(x)$ which is also 0 only at $x=1$ vanishes faster there than $F(x)$. Near $\pm \infty$, they are both asymptotic to multiples $|x|^{p}$ and hence $\frac{G(x)}{F(x)}$ is bounded above by some $\frac{1}{c}$. Now

$$
\left|\frac{f(x)+g(x)}{2}\right|^{p}+c\left|\frac{f(x)-g(x)}{2}\right|^{p} \leq \frac{|f(x)|^{p}}{2}+\frac{|g(x)|^{p}}{2}
$$

Integrating

$$
\left\|\frac{f+g}{2}\right\|_{p}^{p}+c\left\|\frac{f-g}{2}\right\|_{p}^{p} \leq \frac{\|f\|_{p}^{p}}{2}+\frac{\|g\|_{p}^{p}}{2}
$$

In particular if $\|f\|_{p}=\|g\|_{p}=1$ and $\left\|\frac{f+g}{2}\right\|_{p}^{p} \geq 1-\delta$ then $\left\|\frac{f-g}{2}\right\|_{p}^{p} \leq c^{-1} \delta$. This proves uniform convexity.
The case $p<2$. If we define $G(x)=\frac{|1-x|^{2}}{(1+|x|)^{2-p}}$, then we can show $F(x) \geq c G(x)$. The extra $(1+|x|)^{2-p}$ in the denominator adjusts the behavior at ∞. We start with

$$
\int \frac{|f(x)-g(x)|^{2}}{|f(x)|^{2-p}+|g(x)|^{2-p}} d \mu \leq c^{-1} \delta
$$

We estimate

$$
\begin{aligned}
\int|f(x)-g(x)|^{p} d \mu & =\int \frac{|f(x)-g(x)|^{p}}{\left[|f(x)|^{2-p}+|g(x)|^{2-p}\right]^{\frac{p}{2}}}\left[|f(x)|^{2-p}+|g(x)|^{2-p}\right]^{\frac{p}{2}} d \mu \\
& \leq\left[\int\left[\frac{|f(x)-g(x)|^{p}}{\left[|f(x)|^{2-p}+|g(x)|^{2-p}\right]^{\frac{p}{2}}}\right]^{\frac{2}{p}} d \mu\right]^{\frac{p}{2}} \\
& \times\left[\int\left[\left[|f(x)|^{2-p}+|g(x)|^{2-p}\right]^{\frac{p}{2}}\right]^{\frac{2}{2-p}} d \mu\right]^{1-\frac{p}{2}} \\
& \leq\left(c^{-1} \delta\right)^{\frac{p}{2}} \times C\left[\int\left[|f(x)|^{p}+|g(x)|^{p}\right] d \mu\right]^{1-\frac{p}{2}}
\end{aligned}
$$

Done!

