Assignment 9.

Problem 1. Denote by $f=\frac{d \alpha}{d \lambda}$. Then since $\alpha(A) \leq \lambda(A)$ for all $A \in \Sigma$, we have $0 \leq f(x) \leq 1$ a.e. Define

$$
A=\{x: f(x)=0\}, B=\{x: 0<f(x)<1\}, C=\{x: f(x)=1\}
$$

Since $\alpha(A)=\int_{A} f(x) d \lambda$ and $f(x)=0$ a.e. on A, clearly $\alpha(A)=0$. Since $\alpha+\beta=\lambda$ it is clear that $\frac{d \beta}{d \lambda}=g(x)=1-\frac{d \alpha}{d \lambda}=1-f(x)=0$ on C and $\beta(C)=0$. On the other hand on B,

$$
\frac{d \alpha}{d \lambda}=f(x), \quad \frac{d \beta}{d \lambda}=1-f(x)
$$

are both non-zero, hence

$$
\frac{d \alpha}{d \beta}=\frac{f(x)}{1-f(x)}, \quad \frac{d \beta}{d \alpha}=\frac{1-f(x)}{f(x)}
$$

which implies that $\alpha \ll \beta$ and $\beta \ll \alpha$.

Problem 2. If $f_{n}(x) \rightarrow a$ in $L_{2}(\alpha)$ then $f_{n}(x) \rightarrow a$ in measure with respect to α and it then has a subsequence $f_{n_{j}}(x) \rightarrow a$ a.e with respect to α. That subsequence still converges to b in $L_{2}(\beta)$ and by a similar argument has a subsequence converging to b a.e β. We end up with the same subsequence converging to a a.e. α, and b a.e. β. If we denote the subsequence by g_{j} then with

$$
A=\left\{x: \lim _{j \rightarrow \infty} g_{j}(x)=a\right\}, \quad B=\left\{x: \lim _{j \rightarrow \infty} g_{j}(x)=b\right\}
$$

we have $A \cap B=\emptyset$ and $\alpha\left(A^{c}\right)=\beta\left(B^{c}\right)=0$.

Problem 2. This is a simple calculation.

$$
\begin{gathered}
\int x_{i} d \alpha=a \\
\int f_{n}(x) d \alpha=a
\end{gathered}
$$

If $i \neq j$,

$$
\int x_{i} x_{j} d \alpha=a^{2}, \quad \int\left(x_{i}-a\right)\left(x_{j}-a\right) d \alpha=0
$$

and

$$
\int x_{i}^{2} d \alpha=a, \quad \int\left(x_{i}-a\right)^{2} d \alpha=a(1-a)
$$

$$
\begin{aligned}
\int\left[f_{n}(x)-a\right]^{2} d \alpha & =\frac{1}{n^{2}}\left[\sum_{i=1}^{n} \int\left(x_{i}-a\right)^{2} d \alpha+\sum_{i, j: i \neq j} \int\left(x_{i}-a\right)\left(x_{j}-a\right) d \alpha\right] \\
& =\frac{1}{n^{2}}[n a(1-a)] \\
& =\frac{a(1-a)}{n} \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Similarly $\int\left[f_{n}(x)-b\right]^{2} d \beta \rightarrow 0$. Now use Problem 1.

