Real Variables Fall 2007.

Assignment 3. Due Sept 24.

1. Let μ be a countably additive measure on the Borel σ - field $\mathcal{B}(R)$ of the real line R, with $\mu(R) = 1$. For $-\infty < x < \infty$ define

$$F(x) = \mu[(-\infty, x]] = \mu[\{y : -\infty < y \le x\}]$$

Show that F(x) satisfies the following properties:

(i). F(x) is nondecreasing.

(ii). F(x) is right-continuous. i.e. F(x+0) = F(x) for every $x \in R$.

(iii).

$$\lim_{x \to -\infty} F(x) = 0; \qquad \lim_{x \to \infty} F(x) = 1$$

2. Conversely if F(x) on R satisfies (i)-(iii) above show that there is a unique μ on $\mathcal{B}(R)$ such that

$$F(x) = \mu[(-\infty, x]]$$