The completion of rationals. Let Q be the set of rational numbers. Consider the set \mathcal{R} of all partitions of Q into two nonempty disjoint sets L and R, with the following properties. Such a partition will be called a Dedekind cut.

1. $Q=L \cup R$
2. $L \cap R=\emptyset$
3. For any $x \in L$ and $y \in R, x<y$.
4. There is no $q \in L$ such that $y \leq q$ for all $y \in L$.

We note the following.

1. Any $Q \subset \mathcal{R}$. For any $q \in Q$ we can define

$$
L_{q}=\{x: x<q\} \& R_{q}=\{y: y \geq q\}
$$

Then $\left[L_{q}, R_{q}\right]$ satisfies all the properties and is a Dedekind cut.
2. Different q lead to different cuts. If $q_{1} \neq q_{2}$ then either $q_{1}>q_{2}$ or $q_{2}>q_{1}$. Assume the former. Then $q_{2} \in L_{q_{2}}$ and $q_{2} \notin L_{q_{1}}$. Conversely if L has a largest element $q \in Q$ then $L=L_{q}$.
3. If $\left[L_{1}, R_{1}\right]$ and $\left[L_{2}, R_{2}\right]$ are two different Dedekind cuts then either $L_{1} \subset L_{2}$ or $L_{2} \subset L_{1}$. Assume $L_{1} \not \subset L_{2}$. The there is q such that $q \in L_{1}$ but $q \in R_{2}$. Let $q^{\prime} \in L_{2}$. Then $q^{\prime}<q$ and since $q \in L_{1}$ so is q^{\prime}. We say $\left[L_{1}, R_{2}\right]<\left[L_{2}, R_{2}\right]$ if $L_{1} \subset L_{2}$. This defines an ordered set $\mathcal{R}=\{[L, R]\}$ that contains Q and extends the order relation in Q.
4. \mathcal{R} is complete. If A is any subset of \mathcal{R} that is bounded above it has a least upper bound. Either a rational q is an upper bound for A or not. Define L as the set of rationals that are not upper bounds and R as those that are. Then $[L, R]$ is seen to be a Dedekind cut. It is not hard to verify that it is in fact the least upper bound for A.

