Real Variables Fall 2007.

Assignment 11. Due Nov 19.

Problem 1. Let $f(x)$ be a continuous function of x defined on $0 \leq x \leq 1$. Show that the following sequence $p_{n}(x)$ of polynomials of degree n converges to $f(x)$ uniformly on $[0,1]$ as $n \rightarrow \infty$.

$$
p_{n}(x)=\sum_{j=1}^{n}\binom{n}{j} f\left(\frac{j}{n}\right) x^{j}(1-x)^{n-j}
$$

HINT: Use the identities

$$
\sum_{j=1}^{n}\binom{n}{j} j x^{j}(1-x)^{n-j}=n x
$$

and

$$
\sum_{j=1}^{n}\binom{n}{j}(j-n x)^{2} x^{j}(1-x)^{n-j}=n x(1-x)
$$

Problem 2. X is a compact metric space. $C(X)$ is the space of (bounded) continuous functions with $d(f, g)=\sup _{x}|f(x)-g(x)|$. A real valued function $f: X \rightarrow R$ is Lipschitz continuos on X if there exists a $C<\infty$ such that for any $x, y \in X$,

$$
|f(x)-f(y)| \leq C d(x, y)
$$

For any λ, show that the function $g_{\lambda}(x)=\sup _{y}[f(y)-\lambda d(x, y)]$ is Lipschitz continuous and that

$$
\sup _{x}\left|g_{\lambda}(x)-f(x)\right| \rightarrow 0 \quad \text { as } \quad \lambda \rightarrow \infty
$$

