## Real Variables Fall 2007.

## Assignment 9. Due Nov 5.

Problem 1. Let $\alpha, \beta$ be two countably additive non-negative finite measures on $(X, \Sigma)$. Show that there are disjoint sets $A, B . C$ in $\Sigma$ with $X=A \cup B \cup C$ that satisfy $\alpha(A)=0, \beta(B)=0$ and on $C, \alpha \ll \beta$ as well as $\beta \ll \alpha$. Show that the sets $A, B, C$ are unique upto $\lambda$ measure 0 . (Hint: Start with $\lambda=\alpha+\beta$ and examine $\frac{d \alpha}{d \lambda}$ )

Problem 2. If $\alpha$ and $\beta$ are said to be orthogonal if there are disjoint sets $A, B$ such that $\alpha\left(A^{c}\right)=\beta\left(B^{c}\right)=0$. It is written $\alpha \perp \beta$. If there exists a sequence of measurable functions $\left\{f_{n}(x)\right\}$ on $(X, \Sigma)$ such that $\left\|f_{n}(x)-a\right\|_{L_{p}(\alpha)} \rightarrow 0$ and $\left\|f_{n}(x)-b\right\|_{L_{p}(\beta)} \rightarrow 0$ where $\alpha, \beta$ are two finite measures and $a \neq b$ are two different constants then show that $\alpha \perp \beta$.

Problem 3. Let $X=\prod_{i=1}^{\infty} X_{i}$ where each $X_{i}$ is the space $\{0,1\}$ of two points. $\alpha, \beta$ are two product measures on $(X, \Sigma)$ with $\alpha=\prod \alpha_{i}$ and $\beta=\prod \beta_{i}$. The $\left\{\alpha_{i}\right\}$ are all equal to the measure with $\alpha_{i}\{1\}=a, \alpha_{i}\{0\}=1-a$ where as $\left\{\beta_{i}\right\}$ are all equal with $\beta_{i}\{1\}=b, \beta_{i}\{0\}=1-b .0<a, b<1$ and $a \neq b$. Show that $\alpha \perp \beta$. (Hint: consider $f_{n}(x)=\frac{x_{1}+\cdots+x_{n}}{n}$ and use Problem 2, with $p=2$.)

