Real Variables Fall 2007.

Assignment 9. Due Nov 5.

Problem 1. Let α, β be two countably additive non-negative finite measures on (X, Σ) . Show that there are disjoint sets A, B, C in Σ with $X = A \cup B \cup C$ that satisfy $\alpha(A) = 0, \beta(B) = 0$ and on $C, \alpha \ll \beta$ as well as $\beta \ll \alpha$. Show that the sets A, B, C are unique upto λ measure 0. (Hint: Start with $\lambda = \alpha + \beta$ and examine $\frac{d\alpha}{d\lambda}$)

Problem 2. If α and β are said to be orthogonal if there are disjoint sets A, B such that $\alpha(A^c) = \beta(B^c) = 0$. It is written $\alpha \perp \beta$. If there exists a sequence of measurable functions $\{f_n(x)\}$ on (X, Σ) such that $||f_n(x) - a||_{L_p(\alpha)} \to 0$ and $||f_n(x) - b||_{L_p(\beta)} \to 0$ where α, β are two finite measures and $a \neq b$ are two different constants then show that $\alpha \perp \beta$.

Problem 3. Let $X = \prod_{i=1}^{\infty} X_i$ where each X_i is the space $\{0,1\}$ of two points. α,β are two product measures on (X,Σ) with $\alpha = \prod \alpha_i$ and $\beta = \prod \beta_i$. The $\{\alpha_i\}$ are all equal to the measure with $\alpha_i\{1\} = a, \alpha_i\{0\} = 1 - a$ where as $\{\beta_i\}$ are all equal with $\beta_i\{1\} = b, \beta_i\{0\} = 1 - b$. 0 < a, b < 1 and $a \neq b$. Show that $\alpha \perp \beta$. (Hint: consider $f_n(x) = \frac{x_1 + \dots + x_n}{n}$ and use Problem 2, with p = 2.)