Assignment 8.
Fz)= Y p
Jiz; <z

A, = {z : limsup Flo+h) = F(z)
h—0 h

> q}

We can exclude from A the set {z;} which is only countable. For each x € A, given any
0 > 0, there exists h < § such that

F(x+h)—F(x) > qh

Since F'(z) is right continuous, one can assume that = + h as well is not one of the discon-
tinuity points {z;}. The intervals [,z + h] form a covering of A,. We can extract a Vitali
sub-cover. In other words, given € > 0, we have intervals {[z;, z; + h;]} that are disjoint
F(x; 4+ h;) — F(x;) > qh; and >, h; > (u(A,) — €). This implies that

Since € > 0 is arbitrary,

At the second step, given 1 > 0 we pick N such that

Z pj =1

j=N+1

remove the big jumps and write F' = F} + F5 where

Fi(@)= ) »

J>N+1

z; <z

Fy(x)= Y p;

J<N

and

For F} with many small jumps that add up to at most n

N(Bq) <

<3

where

> q}

F — F
B, = {x : limsup 1@+ h) 1(@)
h—0 h



As for F5 which has only finitely many jumps, for any x which is not one of the jump
points {z1,...,xn} , Fo(z + h) = Fy(x) if h is so small that [z, + h] has none of these
points. Therefore

h—0 h
Hence A, C B,U {x1,2z2,...,zn5} and

M(Aq) < #(Bq> <

=0

n
€
Since 1 can be made as small as we like, for any ¢ > 0,

H(Ay) =0

Assignment 7.

Problem 1. Assume that {f,} is NOT uniformly integrable. Then there exists a subse-
quence n; and measurable subsets A, of X, such that u(A,,) — 0 while

/ fn,; (x)dp >0 >0
An;

Lets us denote A,,, by B; and f,,, by g;. g; — f in measure. Since p(B;) — 0, it follows
that g;1 B = f in measure as well. From Fatou’s lemma

/fd,u < liminf/gleqdu = liminf/[gj —g;1p,]du < lim /gjd,u -9
j—o0 J j—o0 j—00

contradicting equality in Fatou’s lemma. Since {f,} is now shown to be uniformly inte-
grable and f is integrable it follows that |f, — f| is uniformly integrable and therefore

f‘fn_f‘dﬂ_)(]'
v can be o-finite. Let ¢ > 0 be integrable. If we define A\(A) = [ ¢(x)du, then X is a finite

measure and
/ fy = / fotdn

fnd™t — fo~t ae. and [ fop7ld\ — [ fo~ld\. We conclude that f,¢~! is uniformly
integrable with respect to A and

[ 10267 = go7ar = [15. = slotr = [ 12 = fldp—o0

Problem 2i.
|zn — | =< 2 — 2,2, — T >
=< Ty, Ty > — < Tp,T>—<T,Tp >+<x,0>
=2[1-<zp,z>]—0
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Problem 2ii. We can assume with out loss of generality that [y [fn|[?dp = [ [f[Pdp =1
and use problem 2i. We need to establish that

lim [ fu(x)g(z)du = / f(@)g(x)dp

n—oo

for all g € Lo(p). We have it for ¢ = 14. take linear combinations and we have it for
simple functions. Simple functions are dense in Lo(p). Finally given g € Lo(u), for any
€ > 0 we can fine a simple function s(z) such that ||s — g|| = [[ |s(z) — g(z)|2dp)z < e

/g(w)[fn(w) — f(z)]dp = /8(93)[fn(1') - f(w)]dwr/[g(x) — s(z)][fu(z) — f(2)]dp
Therefore

limsup | [ g(z)[fn(z) — f(2)]dp| < 1im8up/[g($) = s(@)][fnlx) — f(2)]dpn

n—oo n—oo

< limsupl|lg = s|| - || fn — f]I]

n—oo

< limsup(llg — s[|[[[ ]l + [l /]]]]

n—oo

= 2e
Since € > 0 is arbitrary we are done.
Assignment 6.

Problem 1. Step 1. Start wih a countable collection of disjoint sets {A4;} with positive
measure. Then functions of the form

Zalej ()

provide a 1 — 1 correspondence between {a;} € {s and g(z) = >_; a;14,(z) in Leo(p).

esssup |g(x)| = sup |a |
J

Problem 1. Step 2. Consider in /., the subspace
E = ¢ ={an}: A(§) = lim a, exists

E is a closed subspace of £, and A(£) is a bounded linear functional on E. By Hahn-banach
theorem it can be extended to all of /.



Problem 1. Step 3. Suppose for some {p;} € /1,
A€ =D a;p;
J

Then if we take &, = {0,...,0,1,1,...}, i.e. n zeros followed by ones, A(§,) =1 for all n.
But for {p;} in ¢; one cannot have

1= ij

j=n+1

for all n.

Problem 1. Step 4. We extend the linear functional to L. (p) from the subspace of
functions of the form
> a1, (x)
J

If

for some ¢ € Ly (u), then for any

9(z) = Y aj1a, (@)

Ao) = [13asta, e
J
=2 ain(4;)
J
where p(A;) = fAj ¢(z)dp and {p;} = p(A;) € ¢4, providing a contradiction.

Problem 2. Let p be non-atomic. Then there are sets {A,} that are disjoint and
a, = u(A,) satisfies 0 < a,, < 27" for large n. Consider the function

g(@) = 1a,c

If g is to be in L,, but not in L,, with ps > p1, we need

Z len|Pran, < oo
Z len|P2an, = oo
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as well as



Take ¢, > 0 to satisfy

1
" na,
Then ]
YDLTIE PETS
and

Zcplan = Z (nan)l_% < 00

n

On the other hand, if (X)) is infinite we can find disjoint subsets A,, with a,, = u(A4,) > n?.
Given p; < py pick

cP1 = 1
" na,
so that .
DT PER
n n
But now

1 1 P2 _1
Zcﬁzan = ;ﬁ(nan)pl <0

n

Assignment 5.

Problem 1. Assume

;/Anfdu<oo

Then for any A with pu(A) < oo and f > 0,

/Afdu = /Un(AQAn) fdp = Zn:/AmAn fdp < zn:/An fdu

aw [ i< [ g

A:p(A)<oo J A

so that

On the other hand

> [ gau= [ gaws sw [ g

1<n<N An n=147 AM(A)<OO A

Letting N — oo,

>/ tdus s [ g

1 JAn A:p(A)<oo
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Hence if either one is finite so is the other and both are equal.

Problem 2. Let f, >0 and f,, — f a.e. If u(A) < oo, then from Fatou’s lemma proved

for finite measures
/ fdp <lim inf/ frndp < lim inf/fndu
A n—oo A n—oo

Since this is true for every set A wit u(A) < oo,
/fd,u = sup / fdu < lim inf/ frndu
A:p(A)<oo J A n—oo

Assignment 4.

Problem 1i.
E=uUrn,{z: fu(z) <k}

Problem 1ii.

f*(z) = limsup f,,(x) = inf sup f,(z)
n—00 k>1 n>k

is measurable because

{: f1(@) 2 a} = Ouza{e - sup fu(@) = o}

= M>1 N {2 sup fr(z) >a— —}
n>k m

1
= meI mm Un{x : fn(aj) >a — E}

Similarly f.(r) = liminf, .o fn(7) = supy>; infu> fn(r) is measurable and so is the set

{z: 7 (2) = fu(2)}
and the restriction of f* = f, to this set.

Problem 2. Here p is a finite measure. If f,, — f a.e.

| N1 Ugsniz o [ fi(2) — f(z)| > €}| =0

By countable additivity since

Ukzn{z : |fr(z) = f(2)] = €}
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is a decreasing sequence of sets

Uiz 2 | fe(z) — f(2)] > €}] = 0
as n — oo. But

ple | fo(@) = f(2)] = € < plUkzn{e : |fr(x) = f(2)] = e}] =0
Assignment 3.

Problem 1i. If b > a,
F(b) — Fla) = ul(—00, b)) — ul(—00, a]] = ul(a, b)) = 0

Problem 1ii.

Jim Fla+ 3] = lim pl(=00,2+ 1]) = lim plis(=o0,2 + 1) = pl(—oc, 2] = F(2)

Problem 1iii.

Jim F(k) = lim pf(—o0,k]] = lim p[k>1(—00, k]l = p[0] =0
klim F(k) = klim pl(—o0, k)] = klim pUk>1(—00,k]] = p[R] =1

Problem 2. We define for intervals (a, b] where a can be —oco and b can be oo, ul(a,b]] =

F(b) — F(a). Of course (a, o] is the same as (a,00). We need to prove that if

(a,b] = U;(ay, by]
then

Since one side is obvious it is inly necessary to prove

F(b) — F(a) < Z[F(bj) — F(ay)]

Then by the Caratheodary extension theorem we can extend p from the semiring of inter-
vals to the Borel o-field. Because F'(z) — 0 as x — —oo we can replace a by a finite number
a’ with F(a') — F(a) < e. Similarly we can replace b if it is co by b’ with F(b) — F(b') < e.
Using right continuity we can replace (aj,b;] by (a;,b;) with F(b}) — F(b;) < e277. We
now have
F@{')—F(a') > F(b)p(a) — 2¢

and [a', V'] C (a,b] is a closed bounded interval. In addition (a;,b}) D (ay,bs] is an open
covering of [a’, b'] By Heine-Borel theorem there is a finite sub-cover from {(ay,b})} and

ZF(bj) - F(a;) > Z[F(b}) — F(a;)] — €277 > [F(V) = F(a)] — ¢ > F(b) — F(a) — 3¢

Since € > 0 is arbitrary, countable additivity follows. As for uniqueness p is determined
on the semiring and therefore on the field generated by disjoint union of sets from the
semiring, i.e. disjoint union of intervals (a,b]. But if two measures agree on a filed they
agree on the o-field generated by the field.



