Assignment 8.

$$
\begin{gathered}
F(x)=\sum_{j: x_{j} \leq x} p_{j} \\
A_{q}=\left\{x: \limsup _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}>q\right\}
\end{gathered}
$$

We can exclude from A the set $\left\{x_{j}\right\}$ which is only countable. For each $x \in A_{q}$ given any $\delta>0$, there exists $h<\delta$ such that

$$
F(x+h)-F(x) \geq q h
$$

Since $F(x)$ is right continuous, one can assume that $x+h$ as well is not one of the discontinuity points $\left\{x_{j}\right\}$. The intervals $[x, x+h]$ form a covering of A_{q}. We can extract a Vitali sub-cover. In other words, given $\epsilon>0$, we have intervals $\left\{\left[x_{i}, x_{i}+h_{i}\right]\right\}$ that are disjoint $F\left(x_{i}+h_{i}\right)-F\left(x_{i}\right) \geq q h_{i}$ and $\sum_{i} h_{i} \geq\left(\mu\left(A_{q}\right)-\epsilon\right)$. This implies that

$$
q\left(\mu\left(A_{q}\right)-\epsilon\right) \leq \sum_{i}\left[F\left(x_{i}+h_{i}\right)-F\left(x_{i}\right)\right] \leq s
$$

Since $\epsilon>0$ is arbitrary,

$$
\mu\left(A_{q}\right) \leq \frac{s}{q}
$$

At the second step, given $\eta>0$ we pick N such that

$$
\sum_{j=N+1}^{\infty} p_{j} \leq \eta
$$

remove the big jumps and write $F=F_{1}+F_{2}$ where

$$
F_{1}(x)=\sum_{\substack{j \geq N+1 \\ x_{j} \leq x}} p_{j}
$$

and

$$
F_{2}(x)=\sum_{\substack{j \leq N \\ x_{j} \leq x}} p_{j}
$$

For F_{1} with many small jumps that add up to at most η

$$
\mu\left(B_{q}\right) \leq \frac{\eta}{q}
$$

where

$$
B_{q}=\left\{x: \limsup _{h \rightarrow 0} \frac{F_{1}(x+h)-F_{1}(x)}{h}>q\right\}
$$

As for F_{2} which has only finitely many jumps, for any x which is not one of the jump points $\left\{x_{1}, \ldots, x_{N}\right\}, F_{2}(x+h)=F_{2}(x)$ if h is so small that $[x, x+h]$ has none of these points. Therefore

$$
\lim _{h \rightarrow 0} \frac{F_{2}(x+h)-F_{2}(x)}{h}=0
$$

Hence $A_{q} \subset B_{q} \cup\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ and

$$
\mu\left(A_{q}\right) \leq \mu\left(B_{q}\right) \leq \frac{\eta}{\epsilon}
$$

Since η can be made as small as we like, for any $q>0$,

$$
\mu\left(A_{q}\right)=0
$$

Assignment 7.

Problem 1. Assume that $\left\{f_{n}\right\}$ is NOT uniformly integrable. Then there exists a subsequence n_{j} and measurable subsets $A_{n_{j}}$ of X, such that $\mu\left(A_{n_{j}}\right) \rightarrow 0$ while

$$
\int_{A_{n_{j}}} f_{n_{j}}(x) d \mu \geq \delta>0
$$

Lets us denote $A_{n_{j}}$ by B_{j} and $f_{n_{j}}$ by $g_{j} . g_{j} \rightarrow f$ in measure. Since $\mu\left(B_{j}\right) \rightarrow 0$, it follows that $g_{j} \mathbf{1}_{B_{j}^{c}} \rightarrow f$ in measure as well. From Fatou's lemma

$$
\int f d \mu \leq \liminf _{j \rightarrow \infty} \int g_{j} \mathbf{1}_{B_{j}^{c}} d \mu=\liminf _{j \rightarrow \infty} \int\left[g_{j}-g_{j} \mathbf{1}_{B_{j}}\right] d \mu \leq \lim _{j \rightarrow \infty} \int g_{j} d \mu-\delta
$$

contradicting equality in Fatou's lemma. Since $\left\{f_{n}\right\}$ is now shown to be uniformly integrable and f is integrable it follows that $\left|f_{n}-f\right|$ is uniformly integrable and therefore $\int\left|f_{n}-f\right| d \mu \rightarrow 0$.
μ can be σ-finite. Let $\phi>0$ be integrable. If we define $\lambda(A)=\int \phi(x) d \mu$, then λ is a finite measure and

$$
\int f d \mu=\int f \phi^{-1} d \lambda
$$

$f_{n} \phi^{-1} \rightarrow f \phi^{-1}$ a.e. and $\int f_{n} \phi^{-1} d \lambda \rightarrow \int f \phi^{-1} d \lambda$. We conclude that $f_{n} \phi^{-1}$ is uniformly integrable with respect to λ and

$$
\int\left|f_{n} \phi^{-1}-f \phi^{-1}\right| d \lambda=\int\left|f_{n}-f\right| \phi^{-1} d \lambda=\int\left|f_{n}-f\right| d \mu \rightarrow 0
$$

Problem 2i.

$$
\begin{aligned}
\left\|x_{n}-x\right\|^{2} & =<x_{n}-x, x_{n}-x> \\
& =<x_{n}, x_{n}>-<x_{n}, x>-<x, x_{n}>+<x, x> \\
& =2\left[1-<x_{n}, x>\right] \rightarrow 0
\end{aligned}
$$

Problem 2ii. We can assume with out loss of generality that $\int_{X}\left|f_{n}\right|^{2} d \mu=\int_{X}|f|^{2} d \mu=1$ and use problem 2i. We need to establish that

$$
\lim _{n \rightarrow \infty} \int f_{n}(x) g(x) d \mu=\int f(x) g(x) d \mu
$$

for all $g \in L_{2}(\mu)$. We have it for $g=\mathbf{1}_{A}$. take linear combinations and we have it for simple functions. Simple functions are dense in $L_{2}(\mu)$. Finally given $g \in L_{2}(\mu)$, for any $\epsilon>0$ we can fine a simple function $s(x)$ such that $\|s-g\|=\left[\int|s(x)-g(x)|^{2} d \mu\right]^{\frac{1}{2}} \leq \epsilon$.

$$
\int g(x)\left[f_{n}(x)-f(x)\right] d \mu=\int s(x)\left[f_{n}(x)-f(x)\right] d \mu+\int[g(x)-s(x)]\left[f_{n}(x)-f(x)\right] d \mu
$$

Therefore

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left|\int g(x)\left[f_{n}(x)-f(x)\right] d \mu\right| & \leq \limsup _{n \rightarrow \infty} \int[g(x)-s(x)]\left[f_{n}(x)-f(x)\right] d \mu \\
& \leq \limsup _{n \rightarrow \infty}\left[\|g-s\| \cdot\left\|f_{n}-f\right\|\right] \\
& \leq \limsup _{n \rightarrow \infty}\left[\|g-s\|\left[\left\|f_{n}\right\|+\|f\|\right]\right] \\
& =2 \epsilon
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary we are done.

Assignment 6.

Problem 1. Step 1. Start wih a countable collection of disjoint sets $\left\{A_{j}\right\}$ with positive measure. Then functions of the form

$$
\sum_{j} a_{j} \mathbf{1}_{A_{j}}(x)
$$

provide a $1-1$ correspondence between $\left\{a_{j}\right\} \in \ell_{\infty}$ and $g(x)=\sum_{j} a_{j} \mathbf{1}_{A_{j}}(x)$ in $L_{\infty}(\mu)$.

$$
\operatorname{esssup}|g(x)|=\sup _{j}\left|a_{j}\right|
$$

Problem 1. Step 2. Consider in ℓ_{∞} the subspace

$$
E=\left[\xi=\left\{a_{n}\right\}: \Lambda(\xi)=\lim _{n \rightarrow \infty} a_{n} \text { exists }\right]
$$

E is a closed subspace of ℓ_{∞} and $\Lambda(\xi)$ is a bounded linear functional on E. By Hahn-banach theorem it can be extended to all of ℓ_{∞}.

Problem 1. Step 3. Suppose for some $\left\{p_{j}\right\} \in \ell_{1}$,

$$
\Lambda(\xi)=\sum_{j} a_{j} p_{j}
$$

Then if we take $\xi_{n}=\{0, \ldots, 0,1,1, \ldots\}$, i.e. n zeros followed by ones, $\Lambda\left(\xi_{n}\right)=1$ for all n. But for $\left\{p_{j}\right\}$ in ℓ_{1} one cannot have

$$
1=\sum_{j=n+1}^{\infty} p_{j}
$$

for all n.
Problem 1. Step 4. We extend the linear functional to $L_{\infty}(\mu)$ from the subspace of functions of the form

$$
\sum_{j} a_{j} \mathbf{1}_{A_{j}}(x)
$$

If

$$
\Lambda(g)=\int g(x) \phi(x) d \mu
$$

for some $\phi \in L_{1}(\mu)$, then for any

$$
\begin{gathered}
g(x)=\sum_{j} a_{j} \mathbf{1}_{A_{j}}(x) \\
\lambda(g)=\int\left[\sum_{j} a_{j} \mathbf{1}_{A_{j}}(x)\right] d \mu \\
=\sum_{j} a_{j} \mu\left(A_{j}\right)
\end{gathered}
$$

where $\mu\left(A_{j}\right)=\int_{A_{j}} \phi(x) d \mu$ and $\left\{p_{j}\right\}=\mu\left(A_{j}\right) \in \ell_{1}$, providing a contradiction.
Problem 2. Let μ be non-atomic. Then there are sets $\left\{A_{n}\right\}$ that are disjoint and $a_{n}=\mu\left(A_{n}\right)$ satisfies $0<a_{n}<2^{-n}$ for large n. Consider the function

$$
g(x)=\sum_{n} \mathbf{1}_{A_{n}} c_{n}
$$

If g is to be in $L_{p_{1}}$ but not in $L_{p_{2}}$ with $p_{2}>p_{1}$, we need

$$
\sum\left|c_{n}\right|^{p_{1}} a_{n}<\infty
$$

as well as

$$
\sum\left|c_{n}\right|^{p_{2}} a_{n}=\infty
$$

Take $c_{n}>0$ to satisfy

$$
c_{n}^{p_{2}}=\frac{1}{n a_{n}}
$$

Then

$$
\sum_{n} c_{n}^{p_{2}} a_{n}=\sum_{n} \frac{1}{n}=\infty
$$

and

$$
\sum_{n} c_{n}^{p_{1}} a_{n}=\sum_{n} \frac{1}{n}\left(n a_{n}\right)^{1-\frac{p_{2}}{p_{1}}}<\infty
$$

On the other hand, if $\mu(X)$ is infinite we can find disjoint subsets A_{n} with $a_{n}=\mu\left(A_{n}\right) \geq n^{2}$. Given $p_{1}<p_{2}$ pick

$$
c_{n}^{p_{1}}=\frac{1}{n a_{n}}
$$

so that

$$
\sum_{n} c_{n}^{p_{1}} a_{n}=\sum_{n} \frac{1}{n}=\infty
$$

But now

$$
\sum_{n} c_{n}^{p_{2}} a_{n}=\sum_{n} \frac{1}{n}\left(\frac{1}{n a_{n}}\right)^{\frac{p_{2}}{p_{1}}-1}<\infty
$$

Assignment 5.

Problem 1. Assume

$$
\sum_{n} \int_{A_{n}} f d \mu<\infty
$$

Then for any A with $\mu(A)<\infty$ and $f \geq 0$,

$$
\int_{A} f d \mu=\int_{\cup_{n}\left(A \cap A_{n}\right)} f d \mu=\sum_{n} \int_{A \cap A_{n}} f d \mu \leq \sum_{n} \int_{A_{n}} f d \mu
$$

so that

$$
\sup _{A: \mu(A)<\infty} \int_{A} f d \mu \leq \sum_{n} \int_{A_{n}} f d \mu
$$

On the other hand

$$
\sum_{1 \leq n \leq N} \int_{A_{n}} f d \mu=\int_{\cup_{n=1}^{N} A_{n}} f d \mu \leq \sup _{A: \mu(A)<\infty} \int_{A} f d \mu
$$

Letting $N \rightarrow \infty$,

$$
\sum_{1}^{\infty} \int_{A_{n}} f d \mu \leq \sup _{A: \mu(A)<\infty} \int_{A} f d \mu
$$

Hence if either one is finite so is the other and both are equal.
Problem 2. Let $f_{n} \geq 0$ and $f_{n} \rightarrow f$ a.e. If $\mu(A)<\infty$, then from Fatou's lemma proved for finite measures

$$
\int_{A} f d \mu \leq \liminf _{n \rightarrow \infty} \int_{A} f_{n} d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu
$$

Since this is true for every set A wit $\mu(A)<\infty$,

$$
\int f d \mu=\sup _{A: \mu(A)<\infty} \int_{A} f d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu
$$

Assignment 4.

Problem 1i.

$$
E=\cup_{k} \cap_{n}\left\{x: f_{n}(x) \leq k\right\}
$$

Problem 1ii.

$$
f^{*}(x)=\limsup _{n \rightarrow \infty} f_{n}(x)=\inf _{k \geq 1} \sup _{n \geq k} f_{n}(x)
$$

is measurable because

$$
\begin{aligned}
\left\{x: f^{*}(x) \geq a\right\} & =\cap_{k \geq 1}\left\{x: \sup _{n \geq k} f_{n}(x) \geq a\right\} \\
& =\cap_{k \geq 1} \cap_{m}\left\{x: \sup _{n \geq k} f_{n}(x)>a-\frac{1}{m}\right\} \\
& =\cap_{k \geq 1} \cap_{m} \cup_{n}\left\{x: f_{n}(x)>a-\frac{1}{m}\right\}
\end{aligned}
$$

Similarly $f_{*}(x)=\liminf _{n \rightarrow \infty} f_{n}(x)=\sup _{k \geq 1} \inf _{n \geq k} f_{n}(x)$ is measurable and so is the set

$$
\left\{x: f^{*}(x)=f_{*}(x)\right\}
$$

and the restriction of $f^{*}=f_{*}$ to this set.
Problem 2. Here μ is a finite measure. If $f_{n} \rightarrow f$ a.e.

$$
\mu\left[\cap_{n \geq 1} \cup_{k \geq n}\left\{x:\left|f_{k}(x)-f(x)\right| \geq \epsilon\right\}\right]=0
$$

By countable additivity since

$$
\cup_{k \geq n}\left\{x:\left|f_{k}(x)-f(x)\right| \geq \epsilon\right\}
$$

is a decreasing sequence of sets

$$
\mu\left[\cup_{k \geq n}\left\{x:\left|f_{k}(x)-f(x)\right| \geq \epsilon\right\}\right] \rightarrow 0
$$

as $n \rightarrow \infty$. But

$$
\mu\left[x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right] \leq \mu\left[\cup_{k \geq n}\left\{x:\left|f_{k}(x)-f(x)\right| \geq \epsilon\right\}\right] \rightarrow 0
$$

Assignment 3.

Problem 1i. If $b>a$,

$$
F(b)-F(a)=\mu[(-\infty, b]]-\mu[(-\infty, a]]=\mu[(a, b]] \geq 0
$$

Problem 1ii.

$$
\lim _{k \rightarrow \infty} F\left(x+\frac{1}{k}\right]=\lim _{k \rightarrow \infty} \mu\left[\left(-\infty, x+\frac{1}{k}\right]\right]=\lim _{k \rightarrow \infty} \mu\left[\cap_{k \geq 1}\left(-\infty, x+\frac{1}{k}\right]\right]=\mu[(-\infty, x]]=F(x)
$$

Problem 1iii.

$$
\begin{gathered}
\lim _{k \rightarrow-\infty} F(k)=\lim _{k \rightarrow-\infty} \mu[(-\infty, k]]=\lim _{k \rightarrow-\infty} \mu\left[\cap_{k \geq 1}(-\infty, k]\right]=\mu[\emptyset]=0 \\
\lim _{k \rightarrow \infty} F(k)=\lim _{k \rightarrow \infty} \mu[(-\infty, k]]=\lim _{k \rightarrow \infty} \mu\left[\cup_{k \geq 1}(-\infty, k]\right]=\mu[R]=1
\end{gathered}
$$

Problem 2. We define for intervals $(a, b]$ where a can be $-\infty$ and b can be $\infty, \mu[(a, b]]=$ $F(b)-F(a)$. Of course $(a, \infty]$ is the same as (a, ∞). We need to prove that if

$$
(a, b]=\cup_{j}\left(a_{j}, b_{j}\right]
$$

then

$$
F(b)-F(a)=\sum_{j}\left[F\left(b_{j}\right)-F\left(a_{j}\right)\right]
$$

Since one side is obvious it is inly necessary to prove

$$
F(b)-F(a) \leq \sum_{j}\left[F\left(b_{j}\right)-F\left(a_{j}\right)\right]
$$

Then by the Caratheodary extension theorem we can extend μ from the semiring of intervals to the Borel σ-field. Because $F(x) \rightarrow 0$ as $x \rightarrow-\infty$ we can replace a by a finite number a^{\prime} with $F\left(a^{\prime}\right)-F(a)<\epsilon$. Similarly we can replace b if it is ∞ by b^{\prime} with $F(b)-F\left(b^{\prime}\right)<\epsilon$. Using right continuity we can replace $\left(a_{j}, b_{j}\right]$ by $\left(a_{j}, b_{j}^{\prime}\right)$ with $F\left(b_{j}^{\prime}\right)-F\left(b_{j}\right) \leq \epsilon 2^{-j}$. We now have

$$
F\left(b^{\prime}\right)-F\left(a^{\prime}\right) \geq F(b)_{F}(a)-2 \epsilon
$$

and $\left[a^{\prime}, b^{\prime}\right] \subset(a, b]$ is a closed bounded interval. In addition $\left(a_{j}, b_{j}^{\prime}\right) \supset\left(a_{j}, b_{j}\right]$ is an open covering of $\left[a^{\prime}, b^{\prime}\right]$ By Heine-Borel theorem there is a finite sub-cover from $\left\{\left(a_{j}, b_{j}^{\prime}\right)\right\}$ and

$$
\sum_{j} F\left(b_{j}\right)-F\left(a_{j}\right) \geq \sum_{j}\left[F\left(b_{j}^{\prime}\right)-F\left(a_{j}\right)\right]-\epsilon 2^{-j} \geq\left[F\left(b^{\prime}\right)-F\left(a^{\prime}\right)\right]-\epsilon \geq F(b)-F(a)-3 \epsilon
$$

Since $\epsilon>0$ is arbitrary, countable additivity follows. As for uniqueness μ is determined on the semiring and therefore on the field generated by disjoint union of sets from the semiring, i.e. disjoint union of intervals $(a, b]$. But if two measures agree on a filed they agree on the σ-field generated by the field.

