Countable product measures.

Let $X=\prod X_{i}$ be a product space. $X \ni x=\left\{x_{j}\right\}$ where $x_{j} \in X_{j} . \Sigma_{j}$ is a σ-field of subsets of X_{j} and μ_{j} is a countably additive measure on $\left(X_{j}, \Sigma_{j}\right)$ with $\mu\left(X_{j}\right)=1$ for every j. A finite dimensional cylinder set is a set of the form $A=B \times X_{n+1} \times X_{n+2} \times \cdots$ where $B \in \Sigma_{1} \times \cdots \times \Sigma_{n}$. Such sets A form a field \mathcal{F} of subsets of X and the σ - field Σ generated by them is called the product σ-filed $\prod \Sigma_{i}$. We want to construct a measure μ on (X, Σ) which will be $\prod \mu_{i}$. We define $\mu(A)=\left(\mu_{1} \times \mu_{2} \cdots \mu_{n}\right)(B)$ if $A \in \mathcal{F}$ is of the form $A=B \times X_{n+1} \times X_{n+2} \times \cdots$. We can use a larger n and $A=B_{m} \times X_{m+1} \times X_{m+2} \times \cdots$ where $B_{m}=B \times X_{n+1} \times X_{n+2} \times \cdots \times X_{m}$. The definition is consistent, because $\mu_{j}\left(X_{j}\right)=1$. This is used to prove the finite additivity of μ on \mathcal{F}.

The crucial step is to prove the countable additivity of μ on \mathcal{F}. Let $A_{n} \in \mathcal{F}, A_{n} \downarrow$, $\mu\left(A_{n}\right) \geq \epsilon$ for some $\epsilon>0$ and for all n. Then $\cap_{n} A_{n} \neq \emptyset$. With out loss of generality assume $A_{n}=B_{n} \times X_{n+1} \times X_{n+2} \times \cdots$ for some $B_{n} \in \prod_{1}^{n} \Sigma_{i}$. We denote by $B_{n, x_{1}}=$ $\left\{\left(x_{2}, \ldots, x_{n}\right):\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in B_{n}\right\}$.

$$
\mu\left(A_{n}\right)=\int\left(\mu_{2} \times \cdots \times \mu_{n}\right)\left(B_{n, x_{1}}\right) d \mu\left(x_{1}\right) \geq \epsilon
$$

It follows that

$$
\mu_{1}\left\{x_{1}:\left(\mu_{2} \times \cdots \times \mu_{n}\right)\left(B_{n, x_{1}}\right) \geq \frac{\epsilon}{2}\right\} \geq \frac{\epsilon}{2}
$$

Since A_{n} is \downarrow it follows that $B_{n+1} \subset B_{n} \times X_{n+1}$ and therefore

$$
\left(\mu_{2} \times \cdots \times \mu_{n}\right)\left(B_{n, x_{1}}\right) \geq\left(\mu_{2} \cdots \mu_{n+1}\right)\left(B_{n+1, x_{1}}\right)
$$

The function

$$
\left(\mu_{2} \cdots \mu_{n}\right)\left(B_{n, x_{1}}\right)
$$

is non-increasing with n and therefore

$$
\left\{x_{1}:\left(\mu_{2} \times \cdots \times \mu_{n}\right)\left(B_{n, x_{1}}\right) \geq \frac{\epsilon}{2}\right\}
$$

is \downarrow. Hence there is an \bar{x}_{1} such that for all $n \geq 2$

$$
\left(\mu_{2} \times \cdots \times \mu_{n}\right)\left(B_{n, \bar{x}_{1}}\right) \geq \frac{\epsilon}{2}
$$

Repeating the argument there exist \bar{x}_{2} such that for $n \geq 3$,

$$
\left(\mu_{3} \times \cdots \times \mu_{n}\right)\left(B_{n, \bar{x}_{1}, \bar{x}_{2}}\right) \geq \frac{\epsilon}{2^{2}}
$$

By induction, having chosen $\left(\bar{x}_{1}, \ldots, \bar{x}_{k-1}\right)$ there exists \bar{x}_{k} such that for $n \geq k+1$

$$
\left(\mu_{k+1} \times \cdots \times \mu_{n}\right)\left(B_{n, \bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{k}}\right) \geq \frac{\epsilon}{2^{k}}
$$

The sequence $x=\left\{\bar{x}_{k}\right\}$ has the property: for $n \geq k+1$

$$
B_{n, \bar{x}_{1}, \ldots, \bar{x}_{k}} \neq \emptyset
$$

In particular

$$
B_{k+1, \bar{x}_{1}, \ldots, \bar{x}_{k}} \neq \emptyset
$$

Since $B_{k+1} \subset B_{k} \times X_{k+1}$, we have for all k

$$
\left(\bar{x}_{1}, \ldots, \bar{x}_{k}\right) \in B_{k}
$$

Since $B_{k} \in \prod_{1}^{k} \Sigma_{i}$, this implies

$$
x=\left\{\bar{x}_{i}\right\} \in A_{k} \quad \text { for all } k
$$

Hence $\cap_{k} A_{k} \neq \emptyset$.

