If X is a Banach Space, because it is a complete metric space Baire category theorem applies. If $X = \bigcup_{i=1}^{\infty} C_i$ is a countable union of closed sets at least one of them will have interior. If $\{C_i\}$ are not closed then at lest one of them will have a closure that will have a nonempty interior. There are three applications we have in mind.

1. Uniform Boundedness principle. If $T_n : X \to Y$ are bounded linear maps from X to another Banach space Y and if for each $x \in X$

$$\sup_{n} \|T_n x\| = C(x) < \infty$$

then

$$\sup_{n} \sup_{\|x\| \le 1} \|T_n x\| = \sup_{n} \|T_n\| < \infty$$

Proof: Write

$$X = \bigcup_{\ell=1}^{\infty} \{ x : \sup_{n} \|T_n x\| \le \ell \} = \bigcup_{\ell=1}^{\infty} C_{\ell}$$

Clearly each $C_{\ell} = \{x : \sup_n ||T_n x|| \le \ell\}$ is closed. By the Baire category theorem one of them has an interior. Let

$$\{y : \|y - y_0\| \le \delta_0\} \subset C_{\ell_0}$$

for some y_0, δ_0 and ℓ_0 . Then if $||z|| \leq \delta_0$,

$$||T_n z|| = ||T_n(y_0 + z) - T_n y_0|| \le ||T_n(y_0 + z)|| + ||T_n y_0|| \le 2\ell_0$$

Therefore

$$\sup_{n} ||T_{n}|| = \sup_{n} \sup_{\|x\| \le 1} ||T_{n}x|| \le \frac{2\ell_{0}}{\delta_{0}}$$

2. Open Mapping Theorem. Let $T : X \to Y$ be bounded linear map that maps X **onto** Y. Then the image TG of any open set $G \subset X$ is open in Y.

Proof: Let B_{ℓ} be the ball of radius ℓ in X and $D_{\ell} = TB_{\ell}$ its image in Y. Since T is onto $Y = \bigcup_{\ell=1}^{\infty} D_{\ell}$ and by Baire category theorem at least one of the D_{ℓ} say D_{ℓ_0} will have a closure C_{ℓ_0} with non empty interior, i.e it will contain a ball $\{y : \|y - y_0\| < \delta_0\}$. Since the difference of two balls of radius ℓ_0 is contained in a ball of radius $2\ell_0$ it is clear that the closure of the image of a ball of radius $2\ell_0$ will contain a ball of radius δ_0 around 0 in Y. By scaling, the closure of the image of a ball of radius $C\epsilon$ in X will contain a ball of radius ϵ with $C = \frac{2\ell_0}{\delta_0}$ in Y. Let us prove that the image of a ball of radius 2C contains the ball of radius 1. Given y wuith $\|y\| < 1$ we can find x_1 such that $\|x_1\| \leq C$ and $\|Tx_1 - y\| < \frac{1}{2}$. With $y_1 = (y - Tx_1)$ we can find x_2 such that $\|x_2\| \leq \frac{C}{2}$ and $\|Tx_2 - y_1\| \leq \frac{1}{4}$ and so on. The sequence x_n will have the property $\|x_n\| \leq \frac{C}{2^n}$ and $T(\sum_i x_i) = y$. The completeness is needed to sum $\sum_i x_i$. The image of a big ball contains the unit ball. Therefore the image of any ball which is obtained from the image of the unit ball by dilation and translation will contain a ball. This is the open mapping theorem.

Corollary. If T is bonded, one to one and onto its inverse is bounded.

Proof: If the image of a ball of radius C contains the unit ball the inverse if it exists is bounded by C.

Corollary. If ||x|| and |||x||| are two complete norms on X such that $||x|| \le C|||x|||$ then for some other $C' |||x||| \le C' ||x||$

Proof: Think of X under |||x||| and ||x|| as X and Y and the identity map as T. It is one to one, bounded and onto. Hence the inverse which is identity going in the other direction is bounded.

3. Closed Graph Theorem. Let T be a linear map from $X \to Y$. Its graph is the set $\{(x,Tx) : x \in X\} \subset X \times Y$. It is a linear subset of $X \times Y$ which is a Banach space with norm ||x|| + ||y||. The graph is closed if the set $\{(x,Tx) : x \in X\}$ is cosed as a subspace of $X \times Y$. If the graph is closed then T is bounded. The graph being closed amounts to: if $x_n \to x$ and $Tx_n \to y$, then Tx = y.

Proof: Consider the map S from the graph $Z \subset X \times Y$ to X that sends $(x, Tx) \to x$. It is clearly bounded by 1 because $||x|| \leq ||x|| + ||y||$. It is onto. Z is a closed subspace of a Banach space and so is a Banach space. Hence the inverse of S that sends $x \to (x, Tx)$ is bounded, i.e T is bounded.