Let $C(X)$ be the space of continuous functions on a compact metric space X. Let $\Lambda(f)$ be a non-negative linear functional on $C(X)$. Then there is a measure μ on the Borel sets \mathcal{B} of X such that

$$
\Lambda(f)=\int f d \mu
$$

for all $f \in C(X)$.
We define for closed sets $C \in X$

$$
\alpha(C)=\inf \left[\Lambda(f), f: f \geq \mathbf{1}_{C}\right]
$$

and

$$
\beta(G)=\sup [\alpha(C), C: C \subset G\}]
$$

for open sets G. Finally we define

$$
\mu_{*}(A)=\sup [\alpha(C), C: C \subset A] \leq \inf [\beta(G), G: G \supset A]=\mu^{*}(A)
$$

and show that on $\mathcal{B} \mu^{*}(A)=\mu_{*}(A)$ and $\mu(A)$ is a countably additive measure on \mathcal{B}.

Step 1.

$$
\alpha\left(C_{1} \cup C_{2}\right) \leq \alpha\left(C_{1}\right)+\alpha\left(C_{2}\right)
$$

If $C_{1} \cap C_{2}=\emptyset$, then

$$
\alpha\left(C_{1} \cup C_{2}\right)=\alpha\left(C_{1}\right)+\alpha\left(C_{2}\right)
$$

Proof: If, for $i=1,2, f_{i}$ are chosen such that $\lambda\left(f_{i}\right) \leq \alpha\left(C_{i}\right)+\epsilon$, then $f=f_{1}+f_{2} \geq \mathbf{1}_{C_{1} \cup C_{2}}$ and $\lambda(f) \leq \alpha\left(C_{1}\right)+\alpha\left(C_{2}\right)+2 \epsilon$. This implies

$$
\alpha\left(C_{1} \cup C_{2}\right) \leq \Lambda(f) \leq \alpha\left(C_{1}\right)+\alpha\left(C_{2}\right)+2 \epsilon
$$

On the other hand if C_{1} and C_{2} are disjoint then we can find ϕ with $0 \leq \phi \leq 1$ and $\phi=1$ on C_{1} and 0 on C_{2}. If f is chosen such that $f \geq \mathbf{1}_{C_{1} \cup C_{2}}$ and

$$
\Lambda(f) \leq \alpha\left(C_{1} \cup C_{2}\right)+\epsilon
$$

then $f_{1}=\phi f \geq \mathbf{1}_{C_{1}}$ and $f_{2}=(1-\phi) f \geq \mathbf{1}_{C_{2}}$. We have $\lambda\left(f_{i}\right) \geq \alpha\left(C_{i}\right)$ and $f=f_{1}+f_{2}$. This means

$$
\alpha\left(C_{1} \cup C_{2}\right)+\epsilon \geq \alpha\left(C_{1}\right)+\alpha\left(C_{2}\right)
$$

Since $\epsilon>0$ is arbitrary we are done.
Step 2. $\beta\left(G_{1} \cup G_{2}\right) \leq \beta\left(G_{1}\right)+\beta\left(G_{2}\right)$ with equality for disjoint open sets. If $G=\cup_{i} G_{i}$ is a countable union of disjoint open sets, then

$$
\beta(G)=\sum_{i} \beta\left(G_{i}\right)
$$

Proof: Let $G=G_{1} \cup G_{2}$ and $C \subset G$. Then

$$
C_{1}=\left\{x: x \in C \& d\left(x, G_{1}^{c}\right) \geq d\left(x, G_{2}^{c}\right)\right\}
$$

and

$$
C_{2}=\left\{x: x \in C \& d\left(x, G_{1}^{c}\right) \leq d\left(x, G_{2}^{c}\right)\right\}
$$

define sets $C_{i} \in G_{i}$. In particular if $\alpha(C) \geq \beta(G)-\epsilon$,

$$
\beta(G) \leq \alpha(C)+\epsilon \leq \alpha\left(C_{1}\right)+\alpha\left(C_{2}\right)+\epsilon=\beta\left(G_{1}\right)+\beta\left(G_{2}\right)+\epsilon
$$

and we are done. If G_{1} and G_{2} are disjoint and $C_{i} \subset G_{1}$, with $\alpha\left(C_{i}\right) \simeq \beta\left(G_{i}\right)$, then $\beta(G) \geq \alpha\left(C_{1} \cup C_{2}\right)=\alpha\left(C_{1}\right)+\alpha\left(C_{2}\right) \simeq \beta\left(G_{1}\right)+\beta\left(G_{2}\right)$.
Clearly for countable union G of disjoint open sets sets G_{j},

$$
\beta(G) \geq \beta\left(\cup_{j=1}^{n} G_{j}\right)=\sum_{j=1}^{n} \beta\left(G_{j}\right)
$$

for every n. We need to show that for any union

$$
\beta(G) \leq \sum_{j} \beta\left(G_{j}\right)
$$

Let $C \subset G$ be such that $\beta(G) \leq \alpha(C)+\epsilon . \cup_{j} G_{j}$ covers C which is compact, and will be covered by $\cup_{j=1}^{n} G_{j}$ for some n. Then

$$
\beta(G) \leq \alpha(C)+\epsilon \leq \sum_{j=1}^{n} \beta\left(G_{j}\right)+\epsilon \leq \sum_{j} \beta\left(G_{j}\right)+\epsilon
$$

Step 3. If $C \subset G, G \cap C^{c}$ is open and $\beta\left(G \cap C^{c}\right)=\beta(G)-\alpha(C)$.
Proof: First note that if $B \in G \cap C^{c}$ is closed then C, B are disjoint closed sets, with $B \cup C \subset G$. Therefore $\beta(G) \geq \alpha(C \cup B)=\alpha(C)+\alpha(B)$. This is true for all $B \subset G \cup C^{c}$. Hence

$$
\beta(G) \geq \alpha(C)+\beta\left(G \cap C^{c}\right)
$$

On the other hand, for a given ϵ, if f is chosen such that, $0 \leq f \leq 1, f \geq \mathbf{1}_{C}$ and $\Lambda(f) \leq \alpha(C)+\epsilon$ then $f \geq(1+\epsilon)^{-1} \mathbf{1}_{U}$ for some open set U containing C and if $B \subset U$ we have $\Lambda(f) \geq(1+\epsilon)^{-1} \alpha(B)$. This yields $\beta(U) \leq \sup _{B} \alpha(B) \leq(1+\epsilon) \Lambda(f) \leq \Lambda(f)+\epsilon<$ $\alpha(C)+2 \epsilon$

$$
\beta(G) \leq \beta(U)+\beta\left(G \cap C^{c}\right) \leq \alpha(C)+\beta\left(G \cap C^{c}\right)+\epsilon
$$

Step 4. We now show that $\mathcal{A}=\left\{A: \sup _{C: C \subset A} \alpha(A)=\inf _{G: A \subset G} \beta(G)\right\}$, is a σ-field and

$$
\mu(A)=\sup _{C: C \subset A} \alpha(A)=\inf _{G: A \subset G} \beta(G)
$$

is a countably additive measure on A. To show that $A \in \mathcal{A}$, all we need is to find for given ϵ a closed set C and an open set G such that $C \subset A \subset G$ and

$$
\beta\left(G \cap C^{c}\right)=\beta(G)-\alpha(C) \leq \epsilon
$$

The condition is symmetric in A and A^{c} because $\left(G^{c}\right)^{c}=G$. Clearly if

$$
\beta\left(G_{i} \cap C_{i}^{c}\right)=\beta\left(G_{i}\right)-\alpha\left(C_{i}\right) \leq \epsilon_{i}
$$

works for A_{i} then $G=\cup_{i=1}^{N} G_{i}$ and $C=\cup_{i=1}^{N} C_{i}$ works for $\cup_{i=1}^{N} A_{i}$ with $\epsilon=\sum_{i} \epsilon_{i}$. \mathcal{A} is a therefore a field. If $\left\{A_{i}\right\}$ is a finite collection of disjoint sets in \mathcal{A}, from the additivity of $\alpha(C)$ for finite disjoint collection sets $\left\{C_{i}\right\}$ it follows that if $A_{i} \in \mathcal{A}$ and $\left\{A_{i}\right\}$ are disjoint

$$
\mu\left(\cup_{i=1}^{N} A_{i}\right)=\sum_{i=1}^{N} \mu\left(A_{i}\right)
$$

To show that it is a σ-field, let A_{i} be a countable disjoint sequence of sets in \mathcal{A}. Clearly $\sum_{i=1}^{N} \mu\left(A_{i}\right)=\mu\left(\cup_{i=1}^{N} A_{i}\right) \leq \Lambda(1)<\infty$ Therefore for some finite N

$$
\sum_{i=1}^{N} \mu\left(A_{i}\right) \geq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)-\epsilon
$$

Now if we construct C_{i}, G_{i} such that $C_{i} \subset A_{i} \subset G_{i}$

$$
\alpha\left(C_{i}\right) \leq \mu\left(A_{i}\right) \leq \beta\left(G_{i}\right)
$$

and $\beta\left(G_{i}\right)-\alpha\left(C_{i}\right) \leq \frac{\epsilon}{2^{i}}$, it is easy to see that

$$
\cup_{i=1}^{N} C_{i} \subset \cup_{i=1}^{\infty} A_{i} \leq \cup_{i=1}^{\infty} G_{i}
$$

and

$$
\beta\left(\cup_{i=1}^{\infty} G_{i}\right)-\alpha\left(\cup_{i=1}^{N} C_{i}\right) \leq 2 \epsilon
$$

proving that \mathcal{A} is a σ-field and μ is countably additive on it.
Step 5. Finally we need to prove, that $\lambda(f)=\int f d \mu$. Can assume that $0 \leq f \leq 1$. Enough to prove $\lambda(f) \geq \int f d \mu$, because if at the same time $\Lambda(1-f) \geq \int(1-f) d \mu$ and $\lambda(1)=\mu(X)$ we have equality.
Let $\left[a_{i}, b_{i}\right]$ be a finite collection of disjoint subintervals in $[0,1]$ with $b_{i}-a_{i} \leq \epsilon$ abd $\mu\left[\left\{x: f(x)\right.\right.$ in $\left.\left.\cup\left[a_{i}, b_{i}\right]\right\}\right] \leq \epsilon$. Let $C_{i}=\left\{x: f(x) \in\left[a_{i}, b_{i}\right]\right\}$. Construct functions ϕ_{i} such that $\phi_{i}=1$ on C_{i} satisfies $0 \leq \phi_{i} \leq 1$ and is 0 on every other C_{j}. Define $\psi_{1}=\phi_{1}$ and $\psi_{j}=\left(1-\phi_{1}\right) \cdots\left(1-\phi_{j-1}\right) \phi_{j}$ for $2 \leq j \leq n-1$ and $\psi_{n}=\left(1-\phi_{1}\right) \cdots\left(1-\phi_{n-1}\right)$. Then $\sum_{j=1}^{n} \psi_{j}=1$ and $\psi_{j}=1$ on C_{j}.
Then $f=\sum_{j=1}^{n} f \psi_{j}=\sum_{j} f_{j}$ and $f_{j}=f \psi_{j} \geq a_{j} \mathbf{1}_{C_{i}}$. Therefore

$$
\int f d \mu \leq \sum_{i} b_{i} \mu\left(C_{i}\right)+\epsilon \leq \sum_{i} b_{i} \mu\left(C_{i}\right)+2 \epsilon \leq \sum_{i} \Lambda\left(f_{i}\right)+2 \epsilon \leq \Lambda(f)+2 \epsilon
$$

Hence $\lambda(f) \geq \int f d \mu$

