Let C(X) be the space of continuous functions on a compact metric space X. Let $\Lambda(f)$ be a non-negative linear functional on C(X). Then there is a measure μ on the Borel sets \mathcal{B} of X such that

$$\Lambda(f) = \int f \, d\mu$$

for all $f \in C(X)$.

We define for closed sets $C \in X$

$$\alpha(C) = \inf \left[\Lambda(f), \ f : f \ge \mathbf{1}_C \right],$$

and

$$\beta(G) = \sup \left[\alpha(C), \ C : C \subset G \right\} \right]$$

for open sets G. Finally we define

$$\mu_*(A) = \sup \left[\alpha(C), \ C: C \subset A\right] \le \inf \left[\beta(G), \ G: G \supset A\right] = \mu^*(A)$$

and show that on $\mathcal{B} \mu^*(A) = \mu_*(A)$ and $\mu(A)$ is a countably additive measure on \mathcal{B} .

Step 1.

$$\alpha(C_1 \cup C_2) \le \alpha(C_1) + \alpha(C_2)$$

If $C_1 \cap C_2 = \emptyset$, then

$$\alpha(C_1 \cup C_2) = \alpha(C_1) + \alpha(C_2)$$

Proof: If, for i = 1, 2, f_i are chosen such that $\lambda(f_i) \leq \alpha(C_i) + \epsilon$, then $f = f_1 + f_2 \geq \mathbf{1}_{C_1 \cup C_2}$ and $\lambda(f) \leq \alpha(C_1) + \alpha(C_2) + 2\epsilon$. This implies

$$\alpha(C_1 \cup C_2) \le \Lambda(f) \le \alpha(C_1) + \alpha(C_2) + 2\epsilon.$$

On the other hand if C_1 and C_2 are disjoint then we can find ϕ with $0 \le \phi \le 1$ and $\phi = 1$ on C_1 and 0 on C_2 . If f is chosen such that $f \ge \mathbf{1}_{C_1 \cup C_2}$ and

$$\Lambda(f) \le \alpha(C_1 \cup C_2) + \epsilon$$

then $f_1 = \phi f \ge \mathbf{1}_{C_1}$ and $f_2 = (1 - \phi)f \ge \mathbf{1}_{C_2}$. We have $\lambda(f_i) \ge \alpha(C_i)$ and $f = f_1 + f_2$. This means

$$\alpha(C_1 \cup C_2) + \epsilon \ge \alpha(C_1) + \alpha(C_2)$$

Since $\epsilon > 0$ is arbitrary we are done.

Step 2. $\beta(G_1 \cup G_2) \leq \beta(G_1) + \beta(G_2)$ with equality for disjoint open sets. If $G = \bigcup_i G_i$ is a countable union of disjoint open sets, then

$$\beta(G) = \sum_{i} \beta(G_i)$$

Proof: Let $G = G_1 \cup G_2$ and $C \subset G$. Then

$$C_1 = \{x : x \in C \& d(x, G_1^c) \ge d(x, G_2^c)\}$$

and

$$C_2 = \{x : x \in C \& d(x, G_1^c) \le d(x, G_2^c)\}$$

define sets $C_i \in G_i$. In particular if $\alpha(C) \geq \beta(G) - \epsilon$,

$$\beta(G) \le \alpha(C) + \epsilon \le \alpha(C_1) + \alpha(C_2) + \epsilon = \beta(G_1) + \beta(G_2) + \epsilon$$

and we are done. If G_1 and G_2 are disjoint and $C_i \subset G_1$, with $\alpha(C_i) \simeq \beta(G_i)$, then $\beta(G) \ge \alpha(C_1 \cup C_2) = \alpha(C_1) + \alpha(C_2) \simeq \beta(G_1) + \beta(G_2)$.

Clearly for countable union G of disjoint open sets sets G_j ,

$$\beta(G) \ge \beta(\bigcup_{j=1}^{n} G_j) = \sum_{j=1}^{n} \beta(G_j)$$

for every n. We need to show that for any union

$$\beta(G) \le \sum_j \beta(G_j)$$

Let $C \subset G$ be such that $\beta(G) \leq \alpha(C) + \epsilon$. $\cup_j G_j$ covers C which is compact, and will be covered by $\cup_{j=1}^n G_j$ for some n. Then

$$\beta(G) \le \alpha(C) + \epsilon \le \sum_{j=1}^{n} \beta(G_j) + \epsilon \le \sum_{j} \beta(G_j) + \epsilon$$

Step 3. If $C \subset G$, $G \cap C^c$ is open and $\beta(G \cap C^c) = \beta(G) - \alpha(C)$.

Proof: First note that if $B \in G \cap C^c$ is closed then C, B are disjoint closed sets, with $B \cup C \subset G$. Therefore $\beta(G) \ge \alpha(C \cup B) = \alpha(C) + \alpha(B)$. This is true for all $B \subset G \cup C^c$. Hence

$$\beta(G) \ge \alpha(C) + \beta(G \cap C^c)$$

On the other hand, for a given ϵ , if f is chosen such that, $0 \leq f \leq 1$, $f \geq \mathbf{1}_C$ and $\Lambda(f) \leq \alpha(C) + \epsilon$ then $f \geq (1+\epsilon)^{-1}\mathbf{1}_U$ for some open set U containing C and if $B \subset U$ we have $\Lambda(f) \geq (1+\epsilon)^{-1}\alpha(B)$. This yields $\beta(U) \leq \sup_B \alpha(B) \leq (1+\epsilon)\Lambda(f) \leq \Lambda(f) + \epsilon < \alpha(C) + 2\epsilon$

$$\beta(G) \le \beta(U) + \beta(G \cap C^c) \le \alpha(C) + \beta(G \cap C^c) + \epsilon$$

Step 4. We now show that $\mathcal{A} = \{A : \sup_{C:C \subset A} \alpha(A) = \inf_{G:A \subset G} \beta(G)\}$, is a σ -field and

$$\mu(A) = \sup_{C: C \subset A} \alpha(A) = \inf_{G: A \subset G} \beta(G)$$

is a countably additive measure on A. To show that $A \in \mathcal{A}$, all we need is to find for given ϵ a closed set C and an open set G such that $C \subset A \subset G$ and

$$\beta(G \cap C^c) = \beta(G) - \alpha(C) \le \epsilon$$

The condition is symmetric in A and A^c because $(G^c)^c = G$. Clearly if

$$\beta(G_i \cap C_i^c) = \beta(G_i) - \alpha(C_i) \le \epsilon_i$$

works for A_i then $G = \bigcup_{i=1}^N G_i$ and $C = \bigcup_{i=1}^N C_i$ works for $\bigcup_{i=1}^N A_i$ with $\epsilon = \sum_i \epsilon_i$. \mathcal{A} is a therefore a field. If $\{A_i\}$ is a finite collection of disjoint sets in \mathcal{A} , from the additivity of $\alpha(C)$ for finite disjoint collection sets $\{C_i\}$ it follows that if $A_i \in \mathcal{A}$ and $\{A_i\}$ are disjoint

$$\mu(\bigcup_{i=1}^N A_i) = \sum_{i=1}^N \mu(A_i)$$

To show that it is a σ -field, let A_i be a countable disjoint sequence of sets in \mathcal{A} . Clearly $\sum_{i=1}^{N} \mu(A_i) = \mu(\bigcup_{i=1}^{N} A_i) \leq \Lambda(1) < \infty$ Therefore for some finite N

$$\sum_{i=1}^{N} \mu(A_i) \ge \sum_{i=1}^{\infty} \mu(A_i) - \epsilon$$

Now if we construct C_i, G_i such that $C_i \subset A_i \subset G_i$

$$\alpha(C_i) \le \mu(A_i) \le \beta(G_i)$$

and $\beta(G_i) - \alpha(C_i) \leq \frac{\epsilon}{2^i}$, it is easy to see that

$$\cup_{i=1}^{N} C_i \subset \bigcup_{i=1}^{\infty} A_i \le \bigcup_{i=1}^{\infty} G_i$$

and

$$\beta(\cup_{i=1}^{\infty}G_i) - \alpha(\cup_{i=1}^{N}C_i) \le 2\epsilon$$

proving that \mathcal{A} is a σ -field and μ is countably additive on it.

Step 5. Finally we need to prove, that $\lambda(f) = \int f d\mu$. Can assume that $0 \leq f \leq 1$. Enough to prove $\lambda(f) \geq \int f d\mu$, because if at the same time $\Lambda(1-f) \geq \int (1-f)d\mu$ and $\lambda(1) = \mu(X)$ we have equality.

Let $[a_i, b_i]$ be a finite collection of disjoint subintervals in [0, 1] with $b_i - a_i \leq \epsilon$ abd $\mu[\{x : f(x) \not n \cup [a_i, b_i]\}] \leq \epsilon$. Let $C_i = \{x : f(x) \in [a_i, b_i]\}$. Construct functions ϕ_i such that $\phi_i = 1$ on C_i satisfies $0 \leq \phi_i \leq 1$ and is 0 on every other C_j . Define $\psi_1 = \phi_1$ and $\psi_j = (1 - \phi_1) \cdots (1 - \phi_{j-1})\phi_j$ for $2 \leq j \leq n - 1$ and $\psi_n = (1 - \phi_1) \cdots (1 - \phi_{n-1})$. Then $\sum_{j=1}^n \psi_j = 1$ and $\psi_j = 1$ on C_j .

Then
$$f = \sum_{j=1}^{n} f\psi_j = \sum_j f_j$$
 and $f_j = f\psi_j \ge a_j \mathbf{1}_{C_i}$. Therefore

$$\int f \ d\mu \le \sum_i b_i \mu(C_i) + \epsilon \le \sum_i b_i \mu(C_i) + 2\epsilon \le \sum_i \Lambda(f_i) + 2\epsilon \le \Lambda(f) + 2\epsilon$$

Hence $\lambda(f) \ge \int f \ d\mu$