Assignment 7. Due Nov 4, 2003

Q 1. Consider the following function d(x, y) defined for irrational real numbers $E \subset R$.

$$d(x,y) = |x-y| + \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{\left|\frac{1}{(x-r_j)} - \frac{1}{(y-r_j)}\right|}{1 + \left|\frac{1}{(x-r_j)} - \frac{1}{(y-r_j)}\right|}$$

where $\{r_j : j = 1, 2, ...\}$ is an enumeration of the rationals.

a) Show that d is well defined on $E \times E$ and is a metric on E.

b) Show that if $x_n, x \in E$, $d(x_n, x) \to 0$ if and only if $|x_n - x| \to 0$.

c) Show that (E, d) is a complete metric space.

d) Is E with the usual metric |x - y| complete?

Q 2. Abstractly the completion of a metric space (X, d) is a complete metric space (Y, D), a dense subset $Y_0 \,\subset Y$ and a one-to-one map $T: X \to Y_0$ such that $d(x_1, x_2) = D(Tx_1, Tx_2)$ for all $x_1, x_2 \in X$, i.e. an *isometry* between (X, d) and (Y_0, D) . We proved in class that for any (X, d) at least one completion exists. Show that the completion is unique. That is if (Y_0, Y, D) and (Y'_0, Y', D') are both completions of (X, d), then there exists a one to one onto map U from $Y \to Y'$ with $D(y_1, y_2) = D'(Uy_1, Uy_2)$, i.e. an *isometry* between (Y, D) and (Y', D') such that U maps Y_0 onto Y'_0 .