Assignment 5. Due Oct 21, 2003

Q 1. We say that F is absolutely continuous in $[0,1]$ if for any given $\epsilon>0$, there exists a $\delta>0$ such that

$$
\sum_{j=1}^{N}\left|F\left(b_{j}\right)-F\left(a_{j}\right)\right| \leq \epsilon
$$

when ever the intervals $\left[a_{j}, b_{j}\right] \subset[0,1]$ are disjoint and

$$
\sum_{j=1}^{N}\left|b_{j}-a_{j}\right|<\delta
$$

Show that if F is absolutely continuous then it is continuous and is of bounded variation. If $F(x)=F_{1}(x)-F_{2}(x)$ is its minimal decomposition as the difference of two nondecreasing functions then show that F_{1} and F_{2} are absolutely continuous.

Q 2. Deduce from Q 1 that F is absolutely continuous on $[0,1]$ if and only if

$$
F(x)=F(0)+\int_{0}^{x} f(y) d y
$$

for some integrable f.

