Assignment 4. Due Oct 7, 2003.

Construct the Lebesgue measure (area) on the Borel subsets of the square $\{(x, y) : 0 \le x \le 1, 0 \le y \le 1\}$ along the following steps.

1. Start with Borel rectangles, i.e. sets of the form $\{E = (x, y) : x \in A, y \in B\}$ where A and B are chosen from \mathcal{B}_1 the class of Borel subsets of [0, 1]. Show that the class of sets \mathcal{F} that are finite disjoint unions of Borel rectangles is a field and define the Borel σ -field \mathcal{B}_2 in the square as the smallest σ -field generated by this field.

2. Define for any set $E \in \mathcal{B}_2$ the sections

$$E_x = \{y : (x, y) \in E\}$$
 $E_y = \{x : (x, y) \in E\}$

Show that E_x , E_y are in \mathcal{B}_1 and $m(E_x)$, $m(E_y)$ are measurable functions of x and y. More over

$$\int m(E_x)dx = \int m(E_y)dy$$

Show that their common value $m_2(E)$ defines a countably additive measure, i.e. the Lebesgue measure on the Borel subsets of $[0,1] \times [0,1]$. [Hint: in verifying properties for arbitrary $E \in \mathcal{B}_2$, check that the class of stes for which the property holds is a monotone class that contains \mathcal{F} .]