Assignment 4. Due Oct 7, 2003.

Construct the Lebesgue measure (area) on the Borel subsets of the square $\{(x, y): 0 \leq$ $x \leq 1,0 \leq y \leq 1\}$ along the foloowing steps.

1. Start with Borel rectangles, i.e. sets of the form $\{E=(x, y): x \in A, y \in B\}$ where A and B are chosen from \mathcal{B}_{1} the class of Borel subsets of $[0,1]$. Show that the class of sets \mathcal{F} that are finite disjoint unions of Borel rectangles is a field and define the Borel σ-field \mathcal{B}_{2} in the square as the smallest σ-field generated by this field.
2. Define for any set $E \in \mathcal{B}_{2}$ the sections

$$
E_{x}=\{y:(x, y) \in E\} \quad E_{y}=\{x:(x, y) \in E\}
$$

Show that E_{x}, E_{y} are in \mathcal{B}_{1} and $m\left(E_{x}\right), m\left(E_{y}\right)$ are measurable functions of x and y. More over

$$
\int m\left(E_{x}\right) d x=\int m\left(E_{y}\right) d y
$$

Show that their common value $m_{2}(E)$ defines a countably additive meausure, i.e. the Lebesgue measure on the Borel subsets of $[0,1] \times[0,1]$. [Hint: in verifying properties for arbitrary $E \in \mathcal{B}_{2}$, check that the class of stes for which the property holds is a monotone class that contains \mathcal{F}.]

