Assignement 2. Due September 23, 2003

1. Let $\left\{x_{n}: n \geq 1\right\}$ be a sequence of points in $[0,1]$ and $\left\{p_{n}: n \geq 1\right\}$ a sequence of positive numbers such that

$$
m=\sum_{n} p_{n}<\infty
$$

Show that

$$
\mu(A)=\sum_{n: x_{n} \in A} p_{n}
$$

defines a set function $\mu(A)$ defined for all subsets $A \subset[0,1]$ which is a countably additive measure on $\mathcal{P}([0,1])$ the power set of $[0,1]$.
2. In the definition of Lebesgue measure, if we define

$$
m[a, b]=F(b)-F(a)
$$

(instead of $b-a$) for any interval $[a, b] \subset[0,1]$, where $F(x)$ is a continuous non decreasing function on $[0,1]$, show that the proof of the existence of a countably additive extension to the Borel sets $\mathcal{B}([0,1])$ can still be carried out.
3. What happens if $F(x)$ is nondecreasing but is allowed to have jumps?

