## Assignment 11. Due Dec 2, 2003.

Q1. Consider the space $\ell_{1}$ of sequences $\mathbf{a}=\left\{a_{n}: n \geq 1\right\}$ such that $\sum_{n=1}^{\infty}\left|a_{n}\right|=\|\mathbf{a}\|<\infty$. The distance between two sequences $\mathbf{a}$ and $\mathbf{b}$ is defined as

$$
d(\mathbf{a}, \mathbf{b})=\sum_{n=1}^{\infty}\left|a_{n}-b_{n}\right|
$$

Show that a closed subset $C \subset \ell_{1}$ is compact if and only if

$$
\sup _{\mathbf{a} \in C}\|a\|<\infty
$$

and

$$
\lim _{N \rightarrow \infty} \sup _{\mathbf{a} \in C} \sum_{n=N}^{\infty}\left|a_{n}\right|=0
$$

Q2. Characterize the compact subsets of the space $\ell_{\infty}^{0}$ of sequences $\mathbf{a}=\left\{a_{n}: n \geq 1\right\}$ with the property, $\lim _{n \rightarrow \infty} a_{n}=0$, the metric being

$$
d(\mathbf{a}, \mathbf{b})=\sup _{n \geq 1}\left|a_{n}-b_{n}\right|
$$

