1. A monotone class \mathcal{C} is one with the property that if either $A_n \uparrow A$ or $A_n \downarrow A$ and $A_n \in \mathcal{C}$ for every *n* then $A \in \mathcal{C}$. A field \mathcal{F} is a class that is closed under finite unions and complementation. It follows then it is closed under finite intersections as well. A σ field is a field that is closed under countable unions. Show that a field \mathcal{F} is a σ -field if and only if it is a monotone class.

2. Show that if \mathcal{F} is a field and \mathcal{M} is a monotone class that contains \mathcal{F} , then \mathcal{M} contains the σ -filed generated by \mathcal{F} .