Problem Set 5.

Oct 30,2000
Let $h \geq 0$ be given. Consider a Markov chain on R, with transition probability density

$$
\pi_{h}(x, y)=\frac{1}{\sqrt{2 \pi h}} \exp \left[-\frac{1}{2 h}(y-x-h b(x))^{2}\right]
$$

What is the Radon Nikodym derivative of this Markov chain with respect to the random walk with transition densities

$$
q_{h}(x, y)=\frac{1}{\sqrt{2 \pi h}} \exp \left[-\frac{1}{2 h}(y-x)^{2}\right] ?
$$

If we think of X_{n} as $X_{h}(n h)$ for a continuos time process $X_{h}(t)$ sampled at $t=n h$ and linearly interpolated in between, what happens as $h \rightarrow 0$ to the random walk with transition probability q_{h}, to the chain with transition probability π_{h} and to the RadonNikodym derivative?

