Problem Set 5. Oct 30,2000

Let $h \ge 0$ be given. Consider a Markov chain on R, with transition probability density

$$\pi_h(x,y) = \frac{1}{\sqrt{2\pi h}} exp[-\frac{1}{2h}(y-x-hb(x))^2]$$

What is the Radon Nikodym derivative of this Markov chain with respect to the random walk with transition densities

$$q_h(x,y) = \frac{1}{\sqrt{2\pi h}} exp[-\frac{1}{2h}(y-x)^2]?$$

If we think of X_n as $X_h(nh)$ for a continuous time process $X_h(t)$ sampled at t = nhand linearly interpolated in between, what happens as $h \to 0$ to the random walk with transition probability q_h , to the chain with transition probability π_h and to the Radon-Nikodym derivative?