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4.10 Brownian Motion on the Halfline.

It is not possible to construct the Brownian on the halfline [0 ,∞). Sooner or
later it will hit 0 and then immeditely would turn negative as the following
lemmas show.

Lemma 4.12. For any x ∈ R, for the Brownian motion on R,

Px [τ0 <∞] = 1

Proof. From the reflection principle for any x > 0,

Px [τ0 ≤ t] = 2Px [x(t) ≤ 0] → 1 as t→∞.

Lemma 4.13. (Blumenthal’s 0-1 Law). If P0,x is any diffusion constructed as
the unique martingale solution starting from x, and A ∈ F0+ = ∩s > 0Fs, then
P0,x(A) = 0 or 1.

Proof. Assume that P0,x(A) > 0. Then QA(·) defined by

QA(E) =
P0,x(A ∩ E)
P0,x(A)

is easily seen to be again a martingale solution and so must coincide with P0,x.
Hence

P0,x(A ∩ E) = P0,x(E)P0,x(A)

In particular A and E are independent. Taking E to be A, we get P (A) = 1.

Lemma 4.14. For the Brownian Motion Px starting from 0, for any δ > 0,

Px [ω : x(t) ≥ 0 for 0 ≤ t ≤ δ] = 0

Proof. For any δ > 0

Px [∪δ>0{ω : x(t) ≥ 0 for 0 ≤ t ≤ δ}] = lim
δ→0

Px [ω : x(t) ≥ 0 for 0 ≤ t ≤ δ]

≤ lim
δ→0

Px [ω : x(δ) ≥ 0] ≤ 1
2

The set A = ∪δ>0{ω : x(t) ≥ 0 for 0 ≤ t ≤ δ} is in F0+ and by Lemma 4.13,
Px(A) = 0.

We have to do something drastic to the Brownian Motion to keep it on the
halfline. We want to characterize what we could do. We want to characterize
all strong Markov families {Px} that have continuous paths, live on the half line
and behave like a normal Brownian Motion away from 0. The last property is
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described by the following. For any smooth f that vanishes in a neighborhood
of 0,

Xf (t) = f(x(t)) − f(x(0))−
∫ t

0

1
2
f ′′(x(s))ds

is a Martingale with respect to (Ω ,Ft , Px). By approximation we can easily
extend the property to functions f which are quadratic near ∞ while still van-
ishing near the origin. Hence such processes have two moments and in fact as
many moments as we need. Any function with f(0) = f ′(0) = f ′′(0) can be
approximated in the C2 topology by functions that vanish in a neighborhood of
0. Constants are no problem. Therefore the martingale property is valid for all
smooth functions f , that satisfy f ′(0) = f ′′(0) = 0.

Lemma 4.15. The function x(t) is a submartingale with respect to any Px and
can be written as

x(t) = A(t) +M(t) (4.15)

where M(t) is a martingale and A(t) is a continuous nondecreasing function of
t that increases only when x(t) is at 0.

Proof. Approximate x by

fε(x) = x− ε arctan
x

ε

Because
1
2
f ′′ε (x) = gε(x) =

εx

(ε2 + x2)2
≥ 0

fε(x(t)) is a submartingale and in the limit so is x(t). Existence of moments
provides enough uniform integrability. Although a general theorem will tell us
that a decomposition of the form (4.15) holds, we will do it by hand in this case.
We obviously want to take

A(t) = lim
ε→0

Aε(t) = lim
ε→0

∫ t

0

gε(x(s))ds

Let us try to control

E
[
[Aε(t)]2

]
= 2E

[∫ ∫
0≤t1≤t2≤t

gε(x(t1))gε(x(t2))dt1dt2

]
= 2E

[∫
0≤t1≤t

gε(x(t1))[fε(x(t)) − fε(x(t1))]dt1

]
If we define

qε(t) = sup
0≤s≤t

sup
x
EPx [fε(x(s)) − fε(x(0))]
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Then
E

[
[Aε(t)]2

] ≤ 2 [qε(t)]2

Or more generally,
E

[
[Aε(t)]k

] ≤ k! [qε(t)]k

We next estimate qε(t).

qε(t) = sup
0≤s≤t

sup
x
EPx

[
(x(t) − ε arctan

x(t)
ε

)− (x− ε arctan
x

ε
)
]

≤ sup
0≤s≤t

sup
x
EPx [|x(t)− x|]

≤ sup
0≤s≤t

sup
x

√
EPx [|x(t)− x|2]

We saw that x(t) is a submartingale. By a similar argument one can show
easily that x2(t) − t is a supermartingale. If we approximate x2 by hε(x) =
[x− ε arctan x

ε ]2

h′′ε (x) → χ(0,∞)(x)

and is uniformly bounded. Therefore

x2(t)− x2(0)−
∫ t

0

χ(0,∞)(x(s))ds

is a martingale. Therefore

EPx
[|x(t)− x|2] = EPx

[
x2(t)− 2x(t)x(0) + x2(0)

]
≤ EPx

[
x2(0) + t− 2x2(0) + x2(0)

]
= t

Providing us the estimate
qε(t) ≤ k!t

k
2 .

We will develop two methods for the construction of Brownian motions on
the halfline with sticky boundary condition. The reflected Brownian motion
exists as the family of distributions {P 0

x} obtained from the Brownian mo-
tion measures {Px}, by the map P 0

x = PxΦ−1 where Φ maps C[[0 ,∞);R] into
C[[0 ,∞);R+] by β(·) → |β(·)|. Relative to any (Ω+ ,Ft , P

0
x ) there is a local

time A(t) with the following properties:

1. A(t) is nondecreasing and the support of the measure dA(t) is contained
in the set {t : x(t) = 0}.

2. For any smooth function f

f(x(t)) − f(x(0))−
∫ t

0

1
2
f ′′(x(s))ds − f ′(0)A(t) (4.16)

is a martingale relative to (Ω+ ,Ft , P
0
x ).



4.10. BROWNIAN MOTION ON THE HALFLINE. 77

3. The process x(t) spends no time on the boundary 0, i.e. for any x ∈ R+,

∫ t

0

χ{0}(x(s))ds = 0 a.e. P 0
x (4.17)

We define a new increasing function

B(t) = λ−1A(t) + t

where λ > 0 is a positive constant. B(t) is a continuous strictly increasing
function of t for any choice of λ > 0. For almost all ω the decomposition of B
into

dB = λ−1 dA+ dt

is its Lebesgue decomposition.

support dA = {t : x(t) = 0}

and, because of () we can take

support dt = {t : x(t) > 0}

We now conclude that the Radon-Nikodym derivatives are given by

dA

dB
= λχ{0}(x(s))

and

dt

dB
= χ(0,∞)(x(s))

We define τt as the solution of

B(τt) = t

and define

y(t) = x(τt).
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Then

f(y(t))−f(y(0))−
∫ t

0

1
2
f ′′(y(s))χ(0,∞)(y(s))ds− λf ′(0)

∫ t

0

χ{0}(y(s))ds

= f(x(τt))− f(y(0))−
∫ t

0

1
2
f ′′(x(τs))χ(0,∞)(x(τs))ds

− λf ′(0)
∫ t

0

χ{0}(x(τs))ds

= f(x(τt))− f(x(0))−
∫ τt

0

1
2
f ′′(x(τB(s)))χ(0,∞)(x(τB(s)))dB(s)

− λf ′(0)
∫ τt

0

χ{0}(x(τB(s)))dB(s)

(by change of variables s→ B(s) )

= f(x(τt))− f(x(0))−
∫ τt

0

1
2
f ′′(x(s))χ(0,∞)(x(s))dB(s)

− λf ′(0)
∫ τt

0

χ{0}(x(s))dB(s)

= f(x(τt))− f(x(0))−
∫ τt

0

1
2
f ′′(x(s))ds − λf ′(0)

∫ τt

0

dA(s)

= f(x(τt))− f(x(0))−
∫ τt

0

1
2
f ′′(x(s))ds − λf ′(0)A(τt)

is a martingale with respect to (Ω ,Fτt , P
0
x ). Since the σ-field σ{y(s) : 0 ≤ s ≤

t} ⊂ Fτt we conclude that the distributions {Pλ
x } of y(·) have the property:

f(y(t))− f(y(0))−
∫ t

0

1
2
f ′′(y(s))χ(0,∞)(y(s))ds− λf ′(0)

∫ t

0

χ{0}(y(s))ds

are (Ω+ ,Ft , P
λ
x ) martingales. Speeding up the clock at the boundary so that

the local time at the boundary turns into real time converts the reflected case
to the sticky case. Conversely if we stop the clock when the process is at the
boundary, any sticky case will become the reflected case.

Let us cosider the sticky case and define the function

B(t) =
∫ t

0

χ(0,∞)(x(s))ds.

We then define τt by
B(τt) = t

and y(·) by
y(t) = x(τt)

To begin we need a lemma.
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Lemma 4.16. Relative to any Pλ
x , the function B(t) is almost surely strictly

increasing in t. In other words, although the process sticks at the boundary it
never spends a positive ‘interval ’of time at the boundary.

Proof. The proof amounts to showing that if we start at the boundary, then

Pλ
0 [inf{t : x(t) > 0} = 0] = 1

Let us define
τ = inf{t : x(t) > 0}

Although τ is not quite a stopping time, it almost is, in the sense that τ + ε is
a stopping time for every ε > 0. By working with τ + ε and letting ε go to 0
at the end the strong Markov property is seen to hold for τ . By Blumenthal’s
0− 1 law,

Px [τ = 0] = 0 or 1

If it is 1 we are done. If it is 0, at the end of this time τ , the process is still
at 0 but now ‘knows’ that it should get out. Clearly a violation of the strong
Markov property.

Now we return to our main goal. We know that

f(x(t))− f(x(0))−
∫ t

0

1
2
f ′′(x(s))χ(0,∞)(x(s))ds − λf ′(0)

∫ t

0

χ{0}(x(s))ds

is a martingale. with respect to (Ω ,Ft , P
λ
x ). Therefore for f satisfying the

boundary condition f ′(0) = 0,

f(x(τt))− f(x(0))−
∫ τt

0

1
2
f ′′(x(s))χ(0,∞)(x(s))ds

= f(y(t))− f(x(0)) −
∫ t

0

1
2
f ′′(y(s))ds

is a martingale and we are done.

Example 4.1. Let us try to calculate

pλ(t) = Pλ
0 [x(t) = 0]

We try to calculate
pλ(x , t) = Pλ

x [x(t) = 0]

by solving the equation
∂u

∂t
=

1
2
∂2u

∂x2

with the boundary condition

λux(0) =
1
2
uxx(0)
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and the initial condition
u(0 , x) = χ{0}(x)

The Laplace transform

v(σ , x) =
∫ ∞

0

e−σtu(t , x)dt

solves
σv − 1

2
vxx = 0 for x > 0

with the boundary condition

σv(0)− λvx(0) = 1

Clearly
vσ(x) = a exp[−√2σ x]

with
a

[
σ + λ

√
2σ

]
= 1

or
α = a(σ , λ) =

[
σ + λ

√
2σ

]−1

Hence ∫ ∞

0

pλ(t)e−σtdt =
[
σ + λ

√
2σ

]−1

This can be explicitly inverted to yield

pλ(t) =
∫ ∞

0

√
2
πt
e−

x2
2t −2λxdx =

∫ ∞

0

√
2
π
e−

x2
2 −2λx

√
tdx

Let P 0
0 be the reflected Brownian Motion starting from 0. The distribution

of the local time process A(t) can be found exactly.

Theorem 4.17. The process A(t) has the same distribution as that of the pro-
cess

M(t) = sup
0≤s≤t

β(t)

of the maximum of a Brownian motion starting from 0.

Proof. By Tanaka formula

x(t) = |β(t)| =
∫ t

0

sign (β(s))dβ(s) +A(t) = z(t) +A(t)

where z(·) is again a Browninan Motion process and A(t) is the local time
process. We will establish that

A(t) = − inf
0≤s≤t

z(s) = sup
0≤s≤t

[−z(s)]
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In fact let f, g and A be arbitrary continuous functions with f(t) ≡ g(t) +A(t),
f(0) = g(0) = A(0) = 0, f ≥ 0 and A(·), nondecreasing and increasing only
when f(t) = 0, i.e. support of dA is contained in {t : f(t) = 0}. Then f and A
are uniquely determined by g and

A(t) = sup
0≤s≤t

[−g(s)] (4.18)

It is easy to see that with the choice (4.18) for A(t), and f(t) = g(t) + A(t) we
get f(t) ≥ 0 as well as {support of dA} ⊂ {t : f(t) = 0}. We will now prove
uniqueness. Let

fi(t) = g(t) +Ai(t); i = 1, 2

with

{support of dAi} ⊂ {t : fi(t) = 0} i = 1, 2. (4.19)

We have
f1(t)− f2(t) = A1(t)−A2(t).

Since A1(t)−A2(t) is a function of bounded variation, using (4.19)

[A1(t)−A2(t)]2 =
∫ t

0

[f1(s)− f2(s)][dA1(s)− dA2(s)]

= −
∫ t

0

f1(s)dA2(s)−
∫ t

0

f2(s)dA1(s)

≤ 0

giving us uniqueness.

In particular we have

P 0
0 [A(t) ≥ `] = P0

[
sup

0≤s≤t
β(s) ≥ `

]
=

∫ ∞

`

√
2
πt

exp[−x
2

2 t
]dx

4.11 Reflected Processes in Higher Dimensions.

We will quickly describe some multidimensional generalizations of reflected
Brownian Motion. Let G be a smooth region in Rd and a = {ai,j(x)}, b =
{bi(x)}, coefficients that are ‘nice ’, i.e. a is smooth and positive definite and
b is smooth. We want to construct a solution and we need to describe what
happens when the path reaches the boundary. We will deal exclusively with
the the reflected case and just make some comments at the end regarding other
possibilities. Reflection is a bad choice for the name, but in reality the process
gets kicked in, in some direction pointing to the interior as soon as it reaches
the boundary. So we have a direction J(b) pointing to the interior at every
point b ∈ B = ∂G. We want to show that given a, b,G and J , there is a unique
family of solutions {Px : x ∈ G∪B} on Ω = C[[0 ,∞);G∪B] with the following
properties.
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1. Px[x(0) = x] = 1

2. Px

[∫ t

0
χB(x(s))ds = 0

]
= 1

3. For any smooth function f that satisfies < J(b) , (∇f)(b) >≥ 0 on B,

f(x(t))− f(x(0)) −
∫ t

0

(Lf)(x(s))ds

is a submartingale with respect to (Ω ,Ft , Px).

The question of existence is a question of nonexplosion as well. To avoid the
problem of dealing with this issue let us assume that our domain G is bounded.
Then the question is purely local. If we start from x ∈ G we know what happens
until we reach the boundary. We do not see it. Px is just the same as the solution
with no boundary until the exit time from G. We therefore need to construct
local solutions when we start on or near the boundary. This is carried out in
several steps.

Step 1. Make a change of coordinates so that a boundary point b becomes 0
and the boundary becomes x1 = 0, a straightline near that point. This will
reduce the problem to a half space. The direction J on B = {x : x1 = 0} can
be described by (1, J2(x2, · · · , xd), · · · , Jd(x2, · · · , xd)).

Step 2. Now make another change of coordinates of a special type, x1 → x1,
xi → xi−x1 Ji(x2 , · · · , xd) for 2 ≤ i ≤ d. The bounadry remains the same, but
the new direction J is just (1, 0, · · · , 0), the inward normal.

Step 3. By a Girsanov formula which can be extended to this case we can
assume that b = 0.

Step 4. In the current coordinate system a1,1(x) is a strictly positive function
and we can do a random time change using τt defined by∫ τt

0

a1,1(x(s))ds = t

to reduce it to a1,1 ≡ 1. At this point if f = f(x1) is a function of x1 only then

(Lf)(x) =
1
2
f ′′(x1)

so that the process x1(t) is in fact the one dimensional reflected Brownian Mo-
tion.

Step 5. We can find a square root σ(x) for a(x) such that a(x) = σ(s)σ∗(x)
with σ1,1(x) ≡ 1 and σ1,j(x) ≡ 0 for 2 ≤ j ≤ d. The stochastic differential
equations for x(t) now look like

dx1(t) = dβ(t) +A(t)
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which is the decomposition of the reflected one dimensional Brownian motion
and is already solved.

dxj(t) = σj,1(x1(t), x2(t), · · · , xd(t))dx1(t)

+
∑

2≤k≤d

σj,k(x1(t), x2(t), · · · , xd(t))dxj(t)

which can be solved by iteration for x2(·), · · · , xd(·) because the boundary has
no effect on them directly.

Comments: We may try to stick to the boundary a little bit. This is dealt the
same way as in one dimension. We can obtain it by random time change from
the reflected case using the local time on the boundary. The holding rate ρ can
now be a function ρ(b) defined on B. The local time A(t) in the reflected case
can be used to construct the time change∫ τt

0

λ(x(s))dA(s) + τt = t

where λ(b) = [ρ(b)]−1. Finally a new phenomenon that can happen is that
the path might diffuse on the boundary which amounts to the kick having a
random tangential component. Imagine in the case of a halfspace, being kicked
form the boundary point (0, y), to the interior point (δ , y+ δJ(y)+

√
δξ) where

ξ is a gaussian random vector with mean 0 and covariance matrix D(y). The
boundary condition then becomes

(Bf)(b) =
∂f

∂x1
+

d∑
j=2

Jj(y)
∂f

∂xj
+

1
2

d∑
i,j=1

Di,j(y)
∂2f

∂xi∂xj
= 0

at b = (0, y) ∈ B. Here y refers to the cordinates x2 through xd. Of course this
can happen in the sticky situation as well and the boundary condition then is

(Lf)(b) = ρ(b)(Bf)(b)


