Take Home Final.

Due on Dec 18

Q1. Consider a population of fixed size N that consists k types of size $n_{1}(t), n_{2}(t), \ldots, n_{k}(t)$ repectively in generation t. At generation $t+1$ the population reproduces according to the folowing rule. Each member of the new generation can be of type $1,2 \ldots, k$ with probabilities $\frac{n_{1}(t)}{N}, \frac{n_{2}(t)}{N}, \ldots, \frac{n_{k}(t)}{N}$ repectively. The types of the N members of generation $t+1$ are chosen independently with these probabilities. This defines a Markov Chain with transition probabilities $\pi(\mathbf{m}, \mathbf{n})$ on the space \mathcal{E}_{N} consisting of $\mathbf{n}=\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ with $n_{1}+n_{2}+\cdots+n_{k}=N$.
a). Write down explicitly the transition probability $\pi(\mathbf{m}, \mathbf{n})$.
b). For smooth functions f on R^{k}, show that the limit

$$
(\mathcal{A} f)(x)=\lim _{\substack{N \rightarrow \infty \\ \mathbf{m} \rightarrow x}} N \sum_{\mathbf{n}}\left[f\left(\frac{\mathbf{n}}{N}\right)-f\left(\frac{\mathbf{m}}{N}\right)\right] \pi(\mathbf{m}, \mathbf{n})
$$

exists and evaluate \mathcal{A} explicitly.
c). Consider the rescaled process $x(t)=\frac{\mathbf{n}(N t)}{N}$ starting at time 0 from $a_{N}=\frac{\mathbf{n}}{N}$, with a distribution of $P_{N, a_{N}}$. Show that $P_{N, a_{N}}$ is totally bounded and any limit P with $a_{N} \rightarrow x$ is a solution to the martingale problem for \mathcal{A} that lives on the simplex $\left\{x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)\right.$: $\left.x_{i} \geq 0, \sum x_{i}=1\right\}$ and starts at time 0 from $a \in \mathcal{S}$.
d). Show that the solution to the martingale problem for \mathcal{A} is unique, by verifying that the equation

$$
\frac{\partial f(t, x)}{\partial t}=\mathcal{A} f ; f(0, x)=f_{0}(x)
$$

has solution which is a polynomial in $x=\left(x_{1}, x_{2} \ldots, x_{k}\right)$ of degree n with coefficients that are smooth functions of t, provided the initial data $f_{0}(x)$ is a polynomial of n.
e). What happens to the process $x(t)$ as $t \rightarrow \infty$ under P_{x} ? If one of many things can happen try to determine the respective probabilities as functions of x.
f). How will things change if between generations there is a possibility of mutation where each individual of type i can change its type to j with a small probability $\frac{p_{i, j}}{N}$ and remain the same type with prbability $1-\frac{1}{N} \sum_{j \neq i} p_{i, j}$? (Different individuals act independently.)

Q2. Let $l(t)$ be the local time at the origin of the one dimensional Brownian motion $\beta(t)$.

$$
l(t)=\int_{0}^{t} \delta(\beta(s)) d s
$$

Define

$$
\tau(t)=\{\sup s: l(s) \leq t\}
$$

Show that $\tau(t)$ is a right continuous process with independent increments and find its Levy-Khintchine representation.

Q3. The Brownina bridge $x(t)$ is the Gaussian process on $[0,1]$ with $E[x(t)]=0$ and $E[x(s) x(t)]=\min (s, t)-s t$. Show that its distribution is the same as that of $\beta(t)-t \beta(1)$. Show that it is a Markov process, and in fact a diffusion process with generator $\frac{1}{2} \frac{d^{2}}{d x^{2}}+$ $b(t, x) \frac{d}{d x}$. Determine $b(t, x)$ explicitly. Show that the Brownian bridge is the conditional distribution of the Brownina motion on $[0,1]$ given that $\beta(1)=0$. In other words the transition probability density $q(s, x ; t, y)$ of the Brownian bridge is given by

$$
q(s, x ; t, y)=\frac{p(s, x ; t, y) p(t, y ; 1,0)}{p(s, x ; 1,0)}
$$

where

$$
p(s, x ; t, y)=\frac{1}{\sqrt{2 \pi t}} \exp \left[-\frac{(y-x)^{2}}{2(t-s)}\right]
$$

Q4. Under what conditions on the function $h(r)$ will the diffusion process with generator

$$
\frac{1}{2} \Delta+h(r)<\frac{x}{r} \cdot \nabla>
$$

where $\left(r=\sqrt{\left(x_{1}^{2}+\cdots+x_{d}^{2}\right)}\right.$, have an invariant probabiliy measure on R^{d} ? Assume that $h(r)$ is a smooth bounded function of r with $h(0)=0$.

