
Chapter 4

Stochastic Differential
Equations.

4.1 Existence and Uniqueness.

Our goal in this chapter is to construct Markov Processes that are Diffusions
in Rd corresponding to specified coefficients a(t , x) = {ai,j(t , x)} and b(t , x) =
{bi(t , x)}. Ito’s method consists of starting from any (Ω ,Ft , P ) and an adapted
Brownian Motion β(t , ω) = {βi(t , ω)} relative to (Ω ,Ft , P ), with values in Rd.
That is to say β has almost surely continuous paths and

exp
[
< θ , β(t) > − t‖θ‖

2

2

]
is a martingale with respect to (Ω ,Ft , P ) for all θ ∈ Rd.

The basic assumption on a and b are the following.

H1. The symmetric positive semidefinite matrix a(t , x) can be written as
a(t , x) = σ(t , x)σ∗(t , x) for some matrix σ(t , x) that satisfies a Lipschitz con-
dition in x.

‖σ(t , x)− σ(t , y)‖ ≤ A|x− y|

H2. The coefficients bi(t , x) satisfy a similar condition.

‖b(t , x)− b(t , y)‖ ≤ A|x − y|

H3. Growth conditions. For simplicity we will assume that for some constant
C

‖σ(t , x)‖ ≤ C and ‖b(t , x)‖ ≤ C
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48 CHAPTER 4. STOCHASTIC DIFFERENTIAL EQUATIONS.

Note that the choice of σ is not unique. We only assume that there is a choice of
σ that satisfies the Lipschitz condition. The bounds of course are really bounds
on a.

Theorem 4.1. 3.2 Given s0 ≥ 0 and an Fs0 measurable, Rd valued square
integrable function ξ0(ω), there exists an almost surely continuous progressively
measurable function ξ(t) = ξ(t , ω) for t ≥ s0 that solves the equation

ξ(t) = ξ0 +
∫ t

s0

σ(s , ξ(s))dβ(s) +
∫ t

s0

b(s , ξ(s))ds (4.1)

The solution is unique in the class of progressively measurable functions.

Proof. The existence and uniqueness follow very closely the standard Picard’s
method for constructing solutions to ODE. We define

ξ0(t) ≡ ξ0 for t ≥ s0

and define successively, for k ≥ 1,

ξk(t) = ξ0 +
∫ t

s0

σ(s , ξk−1(s))dβ(s) +
∫ t

s0

b(s , ξk−1(s))ds (4.2)

Let us remark that the iterations are well defined. They generate progressively
measurable almost surely continuous functions at each stage and by induction
they are well defined. In order to prove the convergence of the iteration scheme
we estimate successive differences. Let us assume with out loss of generality that
s0 = 0 and pick a time interval [0, T ] in which we will prove convergence. Since
T is arbitrary that will be enough. If we denote the difference ξk(t) − ξk−1(t)
by ηk(t), we have

ηk+1(t)

=
∫ t

0

[σ(s , ξk(s))− σ(s , ξk−1(s))]dβ(s) +
∫ t

0

[b(s , ξk(s))− b(s , ξk−1(s))]ds

=
∫ t

0

δk(s)db(s) +
∫ t

0

ek(s)ds (4.3)

Because of the Lipschitz assumption

‖δk(s)‖ ≤ A‖ηk(s)‖ and ‖ek(s)‖ ≤ A‖ηk(s) (4.4)

We can estimate

sup
0≤τ≤t

‖ηk(τ)‖ ≤ sup
0≤τ≤t

‖
∫ τ

0

δk(s)db(s)‖ +
∫ t

0

‖ek(s)‖ds
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By Doob’s inequality for martingales, the property of stochastic integrals
and equation (4.4)

E

[
sup

0≤τ≤t
‖

∫ τ

0

δk(s)db(s)‖2
]
≤ C0E

[
‖

∫ t

0

δk(s)db(s)‖2
]

= C1

∫ t

0

E
[‖δk(s)‖2] ds

≤ A2C1

∫ t

0

E
[‖ηk(s)‖2] ds

On the other hand we can also estimate for t ≤ T ,

E

[(∫ t

0

‖ek(s)‖ds
)2

]
≤ TE

[∫ t

0

‖ek(s)‖2ds
]

≤ A2T

∫ t

0

E
[‖ηk(s)‖2] ds

Putting the two pieces together, if we denote by

∆k(t) = E

[
sup

0≤τ≤t
‖ηk(τ)‖2

]
then, with CT = A2C1(1 + T ),

∆k(t) ≤ CT

∫ t

0

∆k−1(s)ds

Clearly

η1(t) =
∫ t

s0

σ(s , ξ0)dβ(s) +
∫ t

s0

b(s , ξ0)ds

and
∆1(t) ≤ CT t

By induction

∆k(t) ≤ Ck
T t

k

k!

From the convergence of
∑

k[Ck
T T k

k! ]
1
2 we conclude that∑

k

E
[

sup
0≤t≤T

‖ηk(t)‖] <∞.

By Fubini’s theorem ∑
k

sup
0≤t≤T

‖ηk(t)‖ <∞ a.e. P.
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In other words for almost all ω with respect to P ,

lim
k→∞

ξk(t) = ξ(t)

exists uniformly in any finite time interval [0, T ]. The limit ξ(t) is easily seen
to be progressively measurable solution of equation (4.1).

Uniqueness is a slight variation of the same method. If we have two solutions
ξ(t) and ξ′(t), their difference η(t) satisfies

η(t) =
∫ t

0

[σ(s , ξ(s)) − σ(s , ξ′(s))]dβ(s) +
∫ t

0

[b(s , ξ(s))− b(s , ξ′(s))]ds

=
∫ t

0

δ(s)db(s) +
∫ t

0

e(s)ds

with
‖δ(s)‖ ≤ A‖η(s)‖ and ‖e(s)‖ ≤ A‖η(s)‖

Just as in the proof of convergence, for the quantity

∆(t) = E

[
sup

0≤s≤t
‖η(s)‖2

]
we can now obtain

∆(t) ≤ CT

∫ t

0

∆(s)ds

We have the obvious estimate ∆(t) ≤ CT and we obtain by iteration

∆(t) ≤ (CT )k+1 t
k

k!

for every k. Therefore ∆(t) ≡ 0 implying uniqueness.

This uniqueness theorem has a special form. If two solutions of equation (4.1)
are constructed on the same same space for the same Brownian motion with
the same choice of σ then they are identical for almost all ω. This seems to
leave open the possibility that somehow different choices of σ or constructions
in different probability spaces could produce different results. That this is not
the case is easily established. Before we return to this let us proceed with some
comments.

Remark 4.1. We can start with a constant x for our initial value at some time
s and construct a solution ξ(t) = ξ(t ; s , x) for t ≥ s. If we define

p(s , x , t , A) = P
[
ξ(t ; s , x) ∈ A]

then our solutions are Markov processes with transition probability p(s , x , t , A).
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The proof is based on the following argument. Because of uniqueness the
solution starting from time 0 can be solved upto time s and then we can start
again at time s with the initial value equal to the old solution, and we should
not get anything other than the solution obtainable in a single step. In other
words

ξ(t ; s , ξ(s , 0, x)) = ξ(t ; 0 , x)

Since the solution ξ(t ; s , ξ(s , 0, x)) only depnds on ξ(s , 0, x) which is Fs mea-
surable and increments dβ of the Brownian paths over [s, t] that are independent
of Fs, the conditional distribution

P [ξ(t) ∈ A|Fs] = P [ξ(t ; s , ξ(s)) ∈ A|Fs]
= P [ξ(t ; s , z) ∈ A] |z=ξ(s)

= p(s , ξ(s) , t , A)

establishing the Markov property.

Remark 4.2. A similar argument will yield the strong Markov property. We use
the fact that the after a stopping time τ the future increments of the Brownian
motion are still independent of the σ-field Fτ . There are some details to check
about restarting the SDE at a stopping time. But this is left as an exercise.

Remark 4.3. If we have two solutions on two different spaces of the same equa-
tion with the same constant (i.e. non random) initial value, i.e. with the same
σ and b that satisfy our assumptions, then they have the same distributions as
stochastic processes. If we notice our construction, each iteration ξk(t) was a
well defined function of ξk−1 and the Brownian incremets. The iteration scheme
is the same in both. At each stage they are identical functions of different Brow-
nian motions. Therefore they have the same distribution. Pass to the limit.

Remark 4.4. If ξ(t) is any solution anywhere for any choice σ̄ of the square root,
then ξ is a diffusion corresponding to the coefficients a = σ̄σ̄∗, b and can be
represented, by enlarging the space if necessary, as a solution of equation(4.1)
with any arbitrary choice of the square root σ. In particular if one is available
with the Lipschitz property and b is also Lipschitz we are back in the old situ-
ation. Therefore if there is a Lipschitz choice available then the distribution of
any solution with any choice of the square root is identical to the one coming
from the Lipschitz choice. In particular the distribution of any two Lipschitz
choices are identical.

4.2 Some Examples. A Discussion of Unique-
ness.

Ornstein-Uhlenbeck Process. The stochastic differential equation
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dx(t) = σβ(t)− ax(t)dt ; x(0) = x0 (4.5)

has an explicit solution

x(t) = e−atx0 + σe−at

∫ t

0

easdβ(s)

which has a Gaussian distribution with mean e−atx0 and variance given by

σ2(t) = σ2e−2at

∫ t

0

e2asds =
σ2

2a
(1 − e−2at)

This is a Markov Process with stationary Gaussian transition probablity densi-
ties:

p(t , x , y) =
1√

2π σ(t)
exp

[
− (y − e−atx)2

2σ2(t)

]
This is particularly interesting when a > 0, which is the stable case, and then

lim
t→∞σ2(t) = θ =

σ2

2a

and

lim
t→∞ p(t , x , y) =

1√
2πθ

exp
[
−y

2

2θ

]
Geometric Brownian Motion: The function x(t) = x0 exp

[
σβ(t) + µt

]
sat-

isfies according to Ito’s formula the equation

dx(t) = σx(t)dβ(t) + (σµ+
σ2

2
)x(t)dt ; x(0) = x0

so that a solution of

dx(t) = σ x(t)dβ(t) + µx(t)dt ; x(0) = x0

is provided by

x(t) = x0 exp
[
σβ(t) + (µ− σ2

2
)t

]
Notice the behavior

1
t

log x(t) ' (µ− σ2

2
) a.e.

as well as
1
t

logE[x(t)] ' µ

The explanation is that the larger expectation is accounted for by certain very
large values with very small probabilities.
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Remark 4.5. ODE and SDE. The solution x(t) = x0 exp
[
σβ(t) + (µ − σ2

2 )t
]

of
dx(t) = σ x(t)dβ(t) + µx(t)dt ; x(0) = x0

is nice smooth map of Brownian paths and makes sense for all functions f

x(t , f) = x0 exp
[
σf(t) + (µ− σ2

2
)t

]
and for smooth functions as well. If we replace β by a smooth path f , it solves

dx(t) = σ x(t)df(t) + (µ− σ2

2
)x(t)dt ; x(0) = x0

The Ito map satisfies the wrong equation on smooth paths. This is typical.

There are various ways of constructing a solution that correspond to a Diffu-
sion with coefficients a(t , x) = {ai,j(t , x)} and b(t , x) = {bi(t , x)}. For a square
root σ satisfying σσ∗ = a we can attempt to solve the SDE

dx(t) = σ(t , x(t))dβ(t) + b(t , x(t))dt ;x(0) = x0

on the Wiener space and get a map β(·) → x(·). Such a solution if it exists
will be called a strong solution. A Matingale Solution is a measure P on
Ω = C[[0 ,∞) ;Rd] such that P [x(0) = x0] = 1 and for each smooth f the
expression

f(x(t)) − f(x(0))−
∫ t

0

(Ls f)(x(s)ds

is a martingale with respect to (Ω ,Ft , P ). If we can construct on some proba-
bility space (Ω ,Ft , µ) a Brownian motion β(·) and an x(·) that satisfy

x(t) = x0 +
∫ t

0

σ(s , x(s))dβ(s) +
∫ t

0

b(s , x(s))ds

then we call x(·) a Weak Solution to the SDE. We make the following remarks.

Remark 4.6. A strong solution is a weak solution, and if σ is Lipschitz, then
any weak solution is a strong solution. In particular two weak solutions on the
same space involving the same Brownian Motion are identical.

Remark 4.7. The distribution P of any Weak Solution is a Martingale Solu-
tion and conversely any Martingale Solution is the distribution of some Weak
Solution.

Remark 4.8. For a given square root σ if we deifine the 2d× 2d matrix ã as the
2× 2 matrix of d× d blocks

ã =
(
a σ
σ∗ I

)
and b̃ as (b, 0) , then a weak solution of σ , b is the same as a Martingale Solution
of ã , b̃.
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Remark 4.9. Any two weak solutions on different probability spaces can be put
on the space space with the same Brownian Motion.

This needs an explanation. What we mean is the following: Let P1 and P2

be two martingale solutions for ã , b̃. Then we can construct a Q which is a
martingale solution for the 3d dimensional problem with coordinates x , y , z for
â , b̂ where in blocks of d× d

â =

 a(x) σ(x)σ(y)∗ σ(x)
σ(y)σ(x)∗ a(y) σ(y)
σ(x)∗ σ(y)∗ I


while b̂ is given by [b(t , x) , b(t , y) , 0] which has the following two additional
properties:

1. The distribution of x, z coordinates is P1 and that of the y, z coordinates
P2.

2. Given the z cordinate the x and y coordinates are conditionally indepen-
dent.

We start with P the Wiener measure, Pω
i the conditional of ‘x(·)’ given the

Brownian Motion under Pi and define

Q = P (dω)⊗ [Pω
1 × Pω

2 ]

i.e. we build in conditional independence. We can check that Q is a Martingale
Solution for the 3d dimensional problem.

This construction allows us to make the following remark.

Remark 4.10. If it is true that for some σ , b any two weak solutions on the same
space with the same Brownian Motion are identical, then any weak solution is
a strong solution and in such a context the Martingale solution is unique.


