
Chapter 2

Diffusion Processes

2.1 What is a Diffusion Process?

When we want to model a stochastic process in continuous time it is almost
impossible to specify in some reasonable manner a consistent set of finite di-
mensional distributions. The one exception is the family of Gaussian processes
with specified means and covariances. It is much more natural and profitable
to take an evolutionary approach. For simplicity let us take the one dimen-
sional case where we are trying to define a real valued stochastic process with
continuous trajectories. The space Ω = C[0, T ] is the space on which we wish
to construct the measure P . We have the σ-fields Bt = σ{x(s) : 0 ≤ s ≤ t}
defined for t ≤ T . The total σ-field B = BT . We try to specify the measure P by
specifying approximately the conditional distributions P [x(t+h)−x(t) ∈ A|Bt].
These distributions are nearly degenerate and and their mean and variance are
specified as

EP
[
x(t + h)− x(t)|Bt

]
= h b(t, ω)) + o(h) (2.1)

and

EP
[
(x(t + h)− x(t))2|Bt

]
= h a(t, ω)) + o(h) (2.2)

as h → 0, where for each t ≥ 0 b(t, ω) and a(t, ω) are Bt measurable functions.
Since we insist on continuity of paths, this will force the distributions to be
nearly Gaussian and no additional specification should be necessary. We will
devote the next few lectures to investigate this.

Equations (2.1)and (2.2) are infinitesimal differential relations and it is best
to state them in integrated forms that are precise mathematical statements.

We need some definitions.

Definition 2.1. We say that a function f : [0, T ] × Ω → R is progressively
measurable if, for every t ∈ [0, T ] the restiction of f to [0, t]×Ω is a measurable
function of t and ω on ([0, t]× Ω,B[0, t]× Bt) where B[0, t] is the Borel σ-field
on [0, t].
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The condition is somewhat stronger than just demanding that for each t,
f(t, ω) is Bt is measurable. The following facts are elementary and left as
exercises.
Exercise 2.1. If f(t, x) is measurable function of t and x, then f(t, x(t, ω)) is
progressively meausrable.
Exercise 2.2. If f(t, ω) is either left continuous (or right continuous) as function
of t for every ω and if in addition f(t omega) is Bt measurable for every t, then
f is progressively measurable.
Exercise 2.3. There is a sub σ-field Σ = Σpm ⊂ B[0, T ] × BT ) such that pro-
gressive measurability is just measurability with respect to Σpm. In particular
standard operations performed on progreesively measurable functions yield pro-
gressively measurable functions.

We shall always insist that the functions b(· , ·) and a(· , ·) be progressively
measurable. Let us suppose in addition that they are bounded functions. The
boundedness will be relaxed at a later stage.

We reformulate conditions 2.1 and 2.2 as

M1(t) = x(t)− x(0)−
∫ t

0

b(s, ω)ds (2.3)

and

M2(t) = [M1(t)]2 −
∫ t

0

a(s , ω))ds (2.4)

are martingales with respect to (Ω),Bt, P ).
We can then define a Diffusion Process corresponding to a, b as a measure P

on (Ω),B) such that relative to (Ω),Bt, P ) M1(t) and M2(t) are martingales. If
in addition we are given a probability measure µ as the initial distribution, i.e.

µ(A) = P [x(0) ∈ A]

then we can expect P to be determined by a, b and µ.
We saw already that if a ≡ 1 and b ≡ 0, with µ = δ0, we get the stan-

dard Brownian Motion. a = a(t, x(t)) and b = b(t, x(t)), we expect P to be
a Markov Process, because the infinitesimal parameters depend only on the
current position and not on the past history. If there is no explicit depen-
dence on time, then the Markov Process can be expected to have stationary
transition probabilities. Finally if a(t, x) = a(t) is purely a function of t and
b(t, ω)) = b1(t) +

∫ t

0
c(t , s)x(s)ds is linear in ω), then one expects P to be

Gaussian, if µ is so.
Because the pathe are continuous the same argument that we provided earlier

can be used to establish that

Zλ(t) = exp[λM1(t)− λ2

2

∫ t

0

a(s , ω)ds]

= exp[λ[x(t) − x(0)−
∫ t

0

b(s , ω)ds]− λ2

2

∫ t

0

a(s , ω)ds] (2.5)
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is a martingale with respect to (Ω),Bt, P ) for every real λ. We can also take
for our definition of a Diffusion Process corresponding to a, b the condition
that Zλ(t) be a martingale with respect to (Ω),Bt, P ) for every λ. If we do
that we did not have to assume that the paths were almost surely continuous.
(Ω,Bt, P ) could be any space suppporting a stochastic process x(t , ω) such that
the martingale property holds for Zλ(t). If C is an upper bound for a, it is easy
to check with M1(t) defined by equation (2.5)

EP

[
exp[λ[M1(t)−M1(s]

]
≤ exp[

λ2C

2
]

The lemma of Garsia, Rodemich and Rumsey will guarantee that the paths can
be chosen to be continuous.

Let (Ω,F , P ) be a Probability space. Let T be the interval [0, T ] for some
finite T or the infinite interval [0,∞). Let FT ⊂ F be sub σ-fields such that
Fs ⊂ Ft for s, t ∈ T with s < t. We can assume with out loss of generality
that F = ∨t∈TFt. Let a stochastic process x(t , ω) with values in Rn be given.
Assume that it is progressively measurable with respect to (Ω ,Ft). We can
easily gneralize the ideas described in the previous section to diffusion processe
with values in Rn. Given a positive semidefinite n× n matrix a = ai,j and an
n-vector b = bj, we define the operator

(La,bf)(x) =
1
2

n∑
i,j=1

ai,j∂
2f∂xi∂xj(x) +

n∑
j=1

∂f∂xj(x)

If a(t , ω) = ai,j(t , ω) and b(t , ω) = bj(t , ω) are progresssively measurable func-
tions we define

(Lt ,ωf)(x) = (La(t ,ω),b(t ,ω)f)(x)

Theorem 2.1. The following defintions are equivalent. x(t , ω) is a diffusion
process correponding to bounded progressively measurable functions a(· , ·), b(· , ·)
with values in the space of symmetric positive semidefinite n× n matrices, and
n-vectors if

1. x(t , ω) has an almost surely continuous version and

yi(t , ω) = xi(t , ω)− xi(0 , ω)−
∫ t

0

b(s , ω)ds

and

zi,j(t , ω) = yi(t , ω) yj(t , ω)−
∫ t

0

ai,j(s , ω)ds

are (Ω,Ft, P ) martingales.

2. For every λ ∈ Rn

Zλ(t , ω) = exp
[
< λ , y(t , ω) > −1

2

∫ t

0

< λ, a(s , ω)λ > ds

]
is an (Ω,Ft, P ) martingale.
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3. For every λ ∈ Rn

Xλ(t , ω) = exp
[
i < λ , y(t , ω) +

1
2

∫ t

0

< λ, a(s , ω)λ > ds

]
is an (Ω,Ft, P ) martingale.

4. For every smooth bounded function f on Rn with atleast two bounded
continuous derivatives

f(x(t , ω))− f((x(0 , ω))−
∫ t

0

(Ls,ωf)(x(s , ω))ds

is an (Ω,Ft, P ) martingale.

5. For every smooth bounded function f on T×Rn with atleast two bounded
continuous x derivatives and one bounded continuous t derivative

f(t , x(t , ω))− f(0 , (x(0 , ω))−
∫ t

0

(
∂f

∂s
+ Ls,ωf)(s , x(s , ω))ds

is an (Ω,Ft, P ) martingale.

6. For every smooth bounded function f on T×Rn with atleast two bounded
continuous x derivatives and one bounded continuous t derivative

exp
[
f(t , x(t , ω))−f(0 , (x(0 , ω))−

∫ t

0

(
∂f

∂s
+ Ls,ωf)(s , x(s , ω))ds

− 1
2

∫ t

0

< (∇f)(s , x(s , ω)), a(s , ω) (∇f)(s , x(s , ω)) > ds

]
is an (Ω,Ft, P ) martingale.

7. Same as (6) except that f is replaced by g of the form

g(t , x) =< λ, x > +f(t , x)

where f is as in (6) and λ ∈ Rn is arbitrary.

Under any one of the above definitions, x(t , ω) has an almost surely continuous
version satifying

P

[
sup

0≤s≤t
|y(s , ω)− y(0 , ω)| ≥ `

]
≤ 2n exp[

−`2
Ct

]

for some constant C depending only on the dimension n and the upper bound
for a. Here

yi(t , ω) = xi(t , ω)− xi(0 , ω)−
∫ t

0

bi(s , ω)ds
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Proof. (1) implies (2). This was essentially the content of Theorem and the com-
ments of the previous section. Also we saw that the exponential inequality is a
consequence of Doob’s inequality.
(2) implies (3). The condition that Zλ(t) is a martingale can be rewritten as a
whole collecction of identities∫

A

Zλ(t , ω)dP =
∫

A

Zλ(s , ω)dP (2.6)

that is valid for every t > s, A ∈ Fs and λ ∈ Rn. Both sides of eqation (2.6)
are well defined when λ ∈ Rn is replaced by λ ∈ Cn, with complex components
and define entire functions of the n complex variables λ. Since they agree when
the values are real, by analytic continuation, they must agree for all purely
imaginary values of λ as well. This is just (3).
(3) implies (4). This part of the proof requires a simple lemma.

Lemma 2.2. Let M(t , ω) be a martingale relative to (ΩFt, P ) which has almost
surely continuous trajectories and A(t , ω) be a progressively measurable process
that is for almost all ω a continuous function of bounded variation in t. Assume
that for every t the random variable ξ(t , ω) = sup0≤s≤t |M(t)|V ar[0,t]A(t , ω)
has a finite expectation. Then

η(t) = M(t)A(t)−M(0)A(0)−
∫ T

0

M(s)dA(s)

is again a martingale relative to (Ω,Ft, P ).

Proof. (of lemma.) We need to prove that for every s < t,

EP

[
M(t)A(t)−M(s)A(s)−

∫ t

s

M(u)dA(u)
∣∣Fs

]
= 0 a.e.

We can subdivide the interval [s, t] into subintervals with end points s = t0 <

t1 < · · · < tN = t, and approximate
∫ t

s M(u)dA(u) by
∑N

j=1M(tj)[A(tj) −
A(tj−1)]. The fact that A is continuous and ξ(t) is integrable makes the ap-
proximation work in L1(P ) so that

EP

[∫ t

s

M(u)dA(u)
∣∣Fs

]
= lim

N→∞
EP

 N∑
j=1

M(tj)[A(tj)−A(tj−1)]
∣∣Fs


= lim

N→∞
EP

 N∑
j=1

[M(tj)A(tj)−M(tj)A(tj−1)]
∣∣Fs


= lim

N→∞
EP

 N∑
j=1

[M(tj)A(tj)−M(tj−1)A(tj−1)]
∣∣Fs


= EP [M(t)A(t) −M(s)A(s)]
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and we are done. We used the martingale property in going from the second
line to the third when we replaced M(tj)A(tj−1) by M(tj−1)A(tj−1)

Now we return to the proof of the theorem. Let us apply the above lemma
with Mλ(t) = Xλ(t) and

Aλ(t) = exp[i
∫ t

0

< λ , b(s) > ds− 1
2

∫ t

0

< λ , a(s)λ > ds].

Then a simple computation yields

Mλ(t)Aλ(t)−Mλ(0)Aλ(0)−
∫ t

0

Mλ(s)dAλ(s)

= eλ(x(t) − x(0))− 1−
∫ t

0

(Ls,ωeλ)((x(s) − x(0))ds

where eλ(x) = exp[i < λ , x >]. Multiplying by exp[i < λ , x(0) >], which is
essentially a constant, we conclude that

eλ(x(t)) − eλ(x(0))−
∫ t

0

(Ls,ωeλ)((x(s))ds

is a martingale. The above expression is just what we had to prove, except that
our f is special namely, the exponentials eλ(x). But by linear combinations and
limits we can easily pass from exponentials to arbitray smooth bounded func-
tions with two bounded derivatives. We first take care of infinitely diffrentiable
functions with compact support by Fourier integrals and then approximate twice
differentiable functions with those.

(4) implies (3). The steps can be retraced. We start with the martingales defined
by (4) in the special case of f being eλ and choose

Aλ(t) = exp[−i
∫ t

0

< λ , b(s) > ds+
1
2

∫ t

0

< λ , a(s)λ > ds]

and do the computations to get back to the martingales of type (3).

(4) implies (5). This is basically a computation. If f(t , x) can be approximated
by smooth function and so we may assume with out loss of generality more
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derivatives.

EP [f(t , x(t)) − f(s , x(s))|Fs]

= EP [f(t , x(t))− f(t , x(s))|Fs] + EP [f(t , x(s))− f(s , x(s))|Fs]

= EP [
∫ t

s

(Lu,ωf(t , ·))(x(u))du|Fs] + EP [
∫ t

s

∂f

∂u
(u , x(s))du|Fs]

= EP [
∫ t

s

(Lu,ωf(u , ·))(x(u))du|Fs]

+ EP [
∫ t

s

(Lu,ω[f(t , ·)− f(u , ·)])(x(u))]du|Fs]

+ EP [
∫ t

s

∂f

∂u
(u , x(u))du|Fs]

+ EP [
∫ t

s

[
∂f

∂u
(u , x(s))− ∂f

∂u
(u , x(u))]du|Fs]

= EP [
∫ t

s

[
∂f

∂u
+ (Lu,ωf)](u , x(u))du|Fs] + J

where

J = EP [
∫ t

s

(Lu,ω [f(t , ·)− f(u , ·)])(x(u))du|Fs]

+ EP [
∫ t

s

[
∂f

∂u
(u , x(s))− ∂f

∂u
(u , x(u))]du|Fs]

= EP [
∫ t

s

∫ t

u

(
∂f

∂v
Lu,ωf)(v , x(u))du dv|Fs]

− EP [
∫ t

s

∫ u

s

(Lv,ω
∂f

∂u
)(u , (x(v))du dv|Fs]

= EP

[ ∫ ∫
s≤u≤v≤t

(Lu,ω
∂f

∂v
)(v , (x(u))du dv

−
∫ ∫

s≤v≤u≤t

(Lv,ω
∂f

∂u
)(u , (x(v))du dv

]
= 0.

The two integrals are identical, just the roles of u and v have been interchanged.
(5) implies (4). This is trivial because after all in (5) we are allowed to take f
to be purely a function of x.
(5) implies (6). This is again the lemma on multiplying a martingale by a func-
tion of bounded variation. We start with a function of the form exp[f(t , x)] and
the martingale

exp[f(t , x(t))]− exp[f(0 , x(0))]−
∫ t

0

(
∂ef

∂s
+ Ls,ωe

f )(s , x(s))ds
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and use

A(t) = exp
[− ∫ t

0

(
∂f

∂s
+ Ls,ωf)(s , x(s))ds

− 1
2

∫ t

0

< (∇f)(s , x(s)) , a(s)(∇f)(s , x(s)) > ds
]

(6) implies (5). This just again reversing the steps.
(6) implies (7). The problem here is that the function < λ , x > are unbounded.
If we pick a function h(x) of one variable to equal x in the interval [−1.1] and
then levels off smoothly we get easily a smooth bounded function with bounded
derivatives that agrees with x in [−1, 1]. Then the sequence h(x) = kh(x

k )
clearly converges to x, |hk(x)| ≤ |x| and more over |h′k(x)| is uniformly bounded
in x and k and |h′′k(x)| goes to 0 uniformly in k. We approximate < λ , x > by∑

j λjhk(xj) and consider the martingales

exp
[∑

j

λjhk(xj(t))−
∑

j

λjhk(xj(0))−
∫ t

0

ψλ
k (s)ds

]
where

ψλ
k (s) =

∫ t

0

∑
j

λjbj(s , ω)h′k(xj(s))ds+
1
2

∫ t

0

∑
j

aj,j(s , ω)h′′k(xj(s))ds

+
1
2

∫ t

0

∑
i,j

ai,j(s , ω)λiλjh
′
i(xi(s)h′j(xj(s)ds

and converges to

ψλ(s) =
∫ t

0

∑
j

λjbj(s , ω)ds+
1
2

∫ t

0

∑
i,j

ai,j(s , ω)λiλjds

as k→∞. By Fatous’s lemma the limit of nonnegative martingales is always a
supermartingale and therefore in the limit

exp
[
< λ , x(t) − x(0) > −

∫ t

0

ψλ(s)ds
]

is a supermartingale. In particular

EP

[
exp[< λ , x(t) − x(0) > −

∫ t

0

ψλ(s)ds]
]
≤ 1

If we now use the bound on ψ it is easy to obtain the estimate

EP [exp[< λ , x(t)− x(0) >] ≤ Cλ

This provides the necessary uniform integrability to conclude that in the limt
we have a martingale. Once we have the estimate, it is easy to see that we can
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approximate f(t , x)+ < λ , x > by f(t , x) +
∑

j λjhk(xj) and pass to the limit,
thus obtaining (7) from (6). Of course (7) implies both (2) and (6). Also all the
exponential estimates follow at this point. Once we have the estimates there is
no difficulty in obtainig (1) from (3). We need only take f(x) = xi and xixj

that can be justified by the estimates. Some minor manipulation is needed to
obtain the results in the form presented.

2.2 Random walks and Brownian Motion

Let X1, X2, · · · be a sequence of independent identically distributed random
variables with mean 0 and variance 1. The partial sums Sk are defined by
S0 = 0 and for k ≥ 1

Sk = X1 +X2 + · · ·+Xk

We rescale and interpolate to define stochastic processes Xn(t) : 0 ≤ t ≤ 1 by

Xn

(k
n

)
=

Sk√
n

for 0 ≤ k ≤ n and for 1 ≤ k ≤ n and t ∈ [k−1
n , k

n ]

Xn(t) = (nt− k + 1)Xn

(k
n

)
+ (k − nt)Xn

(k − 1
n

)
Let Pn denote the distribution of the process Xn(·) on X = C[0 , 1] and P the
distribution of Brownian Motion, or the Wiener measure as it is often called.
We want to explore the sense in which

lim
n→∞Pn = P

Lemma 2.3. For any finite collection 0 ≤ t1 < t2 < · · · < tm ≤ 1 of m
time points the joint distribution of (x(t1), · · · , x(tm)) under Pn converges, as
n→∞, to the corresponding distribution under P .

Proof. We are dealing here basically with the central limit theorem for sums
independent random variables. Let us define ki

n = [nti] and the increments

ξi
n =

Ski
n
− Ski−1

n√
n

for i = 1, 2, · · · ,m with the convention k0
n = 0. For each n, ξi

n are m mutually
independent random variables and their distributions converge as n → ∞ to
Gaussians with 0 means and variances ti − ti−1 respectively. We take t0 = 0.
This is of course the same distribution for these increments under Brownian
Motion. The interpolation is of no consequence, because the difference between
the end points is exactly some Xi√

n
. So it does not really matter if in the definition
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of Xn(t) if we take kn = [nt] or kn = [nt]+ 1 or take the interpolated value. We
can state this convergensce in the form

lim
n→∞EPn

[
f(x(t1), x(t2), · · · , x(tm))

]
= EP

[
f(x(t1), x(t2), · · · , x(tm))

]
for every m, any m time points (t1, t2, · · · , tm) and any bounded continuous
function f on Rm.

These measures Pn are on the space X of bounded continuous functions on
[0 , 1]. The space X is a metric space with d(f, g) = sup0≤t≤1 |f(t)− g(t)| as the
distance between two continuous functions. The main theorem is

Theorem 2.4. If F (·) is a bounded continuous function on X then

lim
n→∞

∫
X

F (ω)dPn =
∫
X

F (ω)dP

Proof. The main difference is that functions depending on a finite number of
coordinates have been replaced by functions that are bounded and continuous,
but otherwise arbitrary. The proof proceeds by approximation. Let us assume
Lemma 2.5 which asserts that for any ε > 0, there is a compact set Kε such
that supn Pn[X − Kε] ≤ ε and P [X − Kε] ≤ ε. From standard approximation
theory (i.e. Stone-Weierstrass Theorem) the continuous function F , which we
can assume to be bounded by 1, can be approximated by a function f depending
on a finite number of coordinates such that supω∈Kε

|F (ω)−f(ω)| ≤ ε. Moreover
we can assume without loss of generality that f is also bounded by 1. We can
estimate

|
∫
X

F (ω)dPn −
∫
X

f(ω)dPn| ≤
∫

Kε

|F (ω)− f(ω)|dPn + 2Pn[Kc
ε ] ≤ 3ε

as well as

|
∫
X

F (ω)dP −
∫
X

f(ω)dP | ≤
∫

Kε

|F (ω)− f(ω)|dP + 2P [Kc
ε ] ≤ 3ε

Therefore

|
∫
X

F (ω) dPn −
∫
X

F (ω) dP | ≤ 6ε+ |
∫
X

f(ω) dPn −
∫
X

f(ω) dP |

and we are done.

Remark 2.1. We shall prove Lemma 2.5 under the additional assuption that the
underlying random variables Xi have a finite 4-th moment. See the exercise at
the end to remove this condition.

Lemma 2.5. Let Pn, P be as before. Assume that the random variables Xi

have a finite moment of order four. Then for any ε > 0 there exists a compact
set Kε ⊂ X such that

Pn[Kε] ≥ 1− ε



2.2. RANDOM WALKS AND BROWNIAN MOTION 27

for all n and
P [Kε] ≥ 1− ε

as well.

Proof. The set

KB,α = {f : f(0) = 0, |f(t)− f(s)| ≤ B|t− s|α}
is a compact subset of X for each fixed B and α. Theorem 1.3 can be used to
give us a uniform estimate on Pn[Kc

B,α] which can be made small by taking B
large enough. We need only to check that the condition (1.2) holds for Pn with
some constants β, α and C that do not depend on n. Such an estimate clearly
holds for the Brownian motion P .

If {Xi} are independent identically distributed random variables with zero
mean, an elementary calculation yields

E[(X1 +X2 + · · ·+Xk)4] = kE[X4
1 ] + 3k(k − 1)

[
E[X2

1 ]
]2 ≤ C1k + C2k

2

(2.7)

Let us try to estimate E[(Xn(t)−Xn(s))4]. If |t− s| ≤ 2
n we can estiamte

|Xn(t)−Xn(s)| ≤M |t− s|
where M is the maximum slope. There are atmost three intervals involved and

E[M4] ≤ n2E
[
[max |Xi|, |X2|, |X3|]4

] ≤ C n2

which implies that

EPn
[|x(t)− x(s)|4] ≤ |t− s|4 E[M4] ≤ C|t− s|2 (2.8)

If |t − s| > 2
n we can find t′, s′ such that ns′, nt′ are integers, |t − t′| ≤ 1

n and
|s− s′| ≤ 1

n . Applying the estimate (2.8) for the end pieces that are increments
over incomplete intervals and the estimate (2.7) for the piece |x(t′)− x(s′)|, we
get

EPn [|x(t)− x(s)|4] ≤ C n−2 +
C

n
|t′ − s′|+ C|t′ − s′|2

Since both |t− s| and |t′ − s′| are atleast 1
n we obtain (1.2).

Exercise 2.4. To extend the result to the case where only the second moment
exists, we do truncation and write Xi = Yi +Zi. The pairs {(Yi, Zi) : 1 ≤ i ≤ n}
are mutually independent identically distributed random vectors. We can asume
that both Yi and Zi have mean 0. We can fix it so that Yi has variance 1 and
a finite fourth moment. Zi can be forced to have an arbitrarily small variance
σ2. We have Xn(t) = Yn(t) + Zn(t) and by Kolmogorov’s inequality

P
[

sup
0≤t≤1

|Zn(t)| ≥ δ
] ≤ δ−2E

[
[Zn(1)]2

]
= δ−2σ2

which can be made small uniformly in n if σ2 is small enough. Complete the
proof.
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