
Chapter 1

Brownian Motion

1.1 Stochastic Process

A stochastic process can be thought of in one of many equivalent ways. We
can begin with an underlying probability space (Ω, Σ , P ) and a real valued
stochastic process can be defined as a collection of random variables {x(t, ω)}
indexed by the parameter set T. This means that for each t ∈ T, x(t , ω) is
a measurable map of (Ω ,Σ) → (R,B0) where (R,B0) is the real line with the
usual Borel σ-field. The parameter set often represents time and could be either
the integers representing discrete time or could be [0 , T ], [0, ∞) or (−∞ ,∞)
if we are studying processes in continuous time. For each fixed ω we can view
x(t , ω) as a map of T → R and we would then get a random function of t ∈ T.
If we denote by X the space of functions on T, then a stochastic process becomes
a measurable map from a probability space into X. There is a natural σ-field B
on X and measurability is to be understood in terms of this σ-field. This natural
σ-field, called the Kolmogorov σ-field, is defined as the smallest σ-field such that
the projections {πt(f) = f(t) ; t ∈ T} mapping X → R are measurable. The
point of this definition is that a random function x(· , ω) : Ω → X is measurable
if and only if the random variables x(t , ω) : Ω → R are measurable for each
t ∈ T.

The mapping x(·, ·) induces a measure on (X ,B) by the usual definition

Q(A) = P
[
ω : x(· , ω) ∈ A]

(1.1)

for A ∈ B. Since the underlying probability model (Ω ,Σ , P ) is irrelevant, it
can be replaced by the canonical model (X, B , Q) with the special choice of
x(t, f) = πt(f) = f(t). A stochastic process then can then be defined simply as
a probability measure Q on (X ,B).

Another point of view is that the only relevant objects are the joint distri-
butions of {x(t1 , ω), x(t2 , ω), · · · , x(tk , ω)} for every k and every finite subset
F = (t1, t2, · · · , tk) of T. These can be specified as probability measures µF on
Rk. These {µF } cannot be totally arbitrary. If we allow different permutations
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2 CHAPTER 1. BROWNIAN MOTION

of the same set, so that F and F ′ are permutations of each other then µF and
µF ′ should be related by the same permutation. If F ⊂ F ′, then we can obtain
the joint distribution of {x(t , ω) ; t ∈ F} by projecting the joint distribution of
{x(t , ω) ; t ∈ F ′} from Rk′ → Rk where k′ and k are the cardinalities of F ′

and F respectively. A stochastic process can then be viewed as a family {µF }
of distributions on various finite dimensional spaces that satisfy the consistency
conditions. A theorem of Kolmogorov says that this is not all that different. Any
such consistent family arises from a Q on (X ,B) which is uniquely determined
by the family {µF }.

If T is countable this is quite satisfactory. X is the the space of sequences
and the σ-field B is quite adequate to answer all the questions we may want
to ask. The set of bounded sequences, the set of convergent sequences, the
set of summable sequences are all measurable subsets of X and therefore we
can answer questions like, does the sequence converge with probability 1, etc.
However if T is uncountable like [0, T ], then the space of bounded functions,
the space of continuous functions etc, are not measurable sets. They do not
belong to B. Basically, in probability theory, the rules involve only a countable
collection of sets at one time and any information that involves the values of
an uncountable number of measurable functions is out of reach. There is an
intrinsic reason for this. In probability theory we can always change the values
of a random variable on a set of measure 0 and we have not changed anything of
consequence. Since we are allowed to mess up each function on a set of measure
0 we have to assume that each function has indeed been messed up on a set of
measure 0. If we are dealing with a countable number of functions the ‘mess
up’ has occured only on the countable union of these invidual sets of measure 0,
which by the properties of a measure is again a set of measure 0. On the other
hand if we are dealing with an uncountable set of functions, then these sets of
measure 0 can possibly gang up on us to produce a set of positive or even full
measure. We just can not be sure.

Of course it would be foolish of us to mess things up unnecessarily. If we
can clean things up and choose a nice version of our random variables we should
do so. But we cannot really do this sensibly unless we decide first what nice
means. We however face the risk of being too greedy and it may not be possible
to have a version as nice as we seek. But then we can always change our mind.

1.2 Regularity

Very often it is natural to try to find a version that has continuous trajectories.
This is equivalent to restricting X to the space of continuous functions on [0, T ]
and we are trying to construct a measure Q on X = C[0 , T ] with the natural σ-
field B. This is not always possible. We want to find some sufficient conditions
on the finite dimensional distributions {µF} that guarantee that a choice of Q
exists on (X ,B).
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Theorem 1.1. (Kolmogorov’s Regularity Theorem) Assume that for any
pair (s, t) ∈ [0 , T ] the bivariate distribution µs,t satisfies

∫ ∫
|x− y|βµs,t(dx , dy) ≤ C|t− s|1+α (1.2)

for some positive constants β, α and C. Then there is a unique Q on (X ,B)
such that it has {µF } for its finite dimensional distributions.

Proof. Since we can only deal effectively with a countable number of random
variables, we restrict ourselves to values at diadic times. Let us, for simplicity,
take T = 1. Denote by Tn time points t of the form t = j

2n for 0 ≤ j ≤ 2n. The
countable union ∪∞j=0Tj = T0 is a countable dense subset of T. We will con-
struct a probability measure Q on the space of sequences corresponding to the
values of {x(t) : t ∈ T0}, show that Q is supported on sequences that produce
uniformly continuous functions on T0 and then extend them automatically to T
by continuity and the extension will provide us the natural Q on C[0 , 1]. If we
start from the set of values on Tn, the n-th level of diadics, by linear iterpolation
we can construct a version xn(t) that agrees with the original variables at these
diadic points. This way we have a sequence xn(t) such that xn(·) = xn+1(·) on
Tn. If we can show

Q
[
x(·) : sup

0≤t≤1
|xn(t)− xn+1(t)| ≥ 2−nγ

] ≤ C2−nδ (1.3)

then we can conclude that

Q
[
x(·) : lim

n→∞xn(t) = x∞(t) exists uniformly on [0 , 1]
]

= 1 (1.4)

The limit x∞(·) will be continuous on T and will coincide with x(·) on T0 there
by establishing our result. Proof of (1.3) depends on a simple observation. The
difference |xn(·)− xn+1(·)| achieves its maximum at the mid point of one of the
diadic intervals determined by Tn and hence

sup
0≤t≤1

|xn(t)− xn+1(t)|

≤ sup
1≤j≤2n

|xn(
2j − 1
2n+1

)− xn+1(
2j − 1
2n+1

)|

≤ sup
1≤j≤2n

max
{|x(2j − 1

2n+1
)− x(

2j
2n+1

)|, |x(2j − 1
2n+1

)− x(
2j − 2
2n+1

)|}
and we can estimate the left hand side of (1.3) by
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Q
[
x(·) : sup

0≤t≤1
|xn(t)− xn+1(t)| ≥ 2−nγ

]
≤ Q

[
sup

1≤i≤2n+1
|x( i

2n+1
)− x(

i− 1
2n+1

)| ≥ 2−nγ
]

≤ 2n+1 sup
1≤i≤2n+1

Q
[|x( i

2n+1
)− x(

i− 1
2n+1

)| ≥ 2−nγ
]

≤ 2n+12nβγ sup
1≤i≤2n+1

EQ
[|x( i

2n+1
)− x(

i− 1
2n+1

)|β]
≤ C2n+1 2nβγ 2−(1+α)(n+1)

≤ C2−nδ

provided δ ≤ α− βγ. For given α, β we can pick γ < αβ and we are done.

An equivalent version of this theorem is the following.

Theorem 1.2. If x(t , ω) is a stochastic process on (Ω ,Σ , P ) satisfying

EP
[|x(t) − x(s)|β] ≤ C|t− s|1+α

for some positive constants α, β and C, then if necessary , x(t, ω) can be modified
for each t on a set of measure zero, to obtain an equivalent version that is almost
surely continuous.

As an important application we consider Brownian Motion, which is defined
as a stochastic process that has multivariate normal distributions for its finite
dimensional distributions. These normal distributions have mean zero and the
variance covariance matrix is specified by Cov(x(s), x(t)) = min(s, t). An ele-
mentary calculation yields

E|x(s) − x(t)|4 = 3|t− s|2

so that Theorem 1.1 is applicable with β = 4, α = 1 and C = 3.
To see that some restriction is needed, let us consider the Poisson process

defined as a process with independent increments with the distribution of x(t)−
x(s) being Poisson with parameter t− s provided t > s. In this case since

P [x(t) − x(s) ≥ 1] = 1− exp[−(t− s)]

we have, for every n ≥ 0,

E|x(t) − x(s)|n ≥ 1− exp[−|t− s|] ' C|t− s|
and the conditions for Theorem 1.1 are never satisfied. It should not be, because
after all a Poisson process is a counting process and jumps whenever the event
that it is counting occurs and it would indeed be greedy of us to try to put the
measure on the space of continuous functions.
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Remark 1.1. The fact that there cannot be a measure on the space of continu-
ous functions whose finite dimensional distributions coincide with those of the
Poisson process requires a proof. There is a whole class of nasty examples of
measures {Q} on the space of continuous functions such that for every t ∈ [0 , 1]

Q
[
ω : x(t , ω) is a rational number

]
= 1

The difference is that the rationals are dense, whereas the integers are not. The
proof has to depend on the fact that a continuous function that is not identically
equal to some fixed integer must spend a positive amount of time at nonintegral
points. Try to make a rigorous proof using Fubini’s theorem.

1.3 Garsia, Rodemich and Rumsey inequality.

If we have a stochastic process x(t , ω) and we wish to show that it has a nice
version, perhaps a continuous one, or even a Holder continuous or differentiable
version, there are things we have to estimate. Establishing Holder continuity
amounts to estimating

ε(`) = P
[
sup
s,t

|x(s) − x(t)|
|t− s|α ≤ `

]
and showing that ε(`) → 1 as `→∞. These are often difficult to estimate and
require special methods. A slight modification of the proof of Theorem 1.1 will
establish that the nice, continuous version of Brownian motion actually satisfies
a Holder condition of exponent α so long as 0 < α < 1

2 .
On the other hand if we want to show only that we have a version x(t , ω)

that is square integrable, we have to estimate

ε(`) = P
[ ∫ 1

0

|x(t , ω)|2dt ≤ `
]

and try to show that ε(`) → 1 as `→∞. This task is somewhat easier because
we could control it by estimating

EP
[ ∫ 1

0

|x(t , ω)|2 dt]
and that could be done by the use of Fubini’s theorem. After all

EP
[ ∫ 1

0

|x(t , ω)|2 dt] =
∫ 1

0

EP
[|x(t , ω)|2 ]

dt

Estimating integrals are easier that estimating suprema. Sobolev inequality
controls suprema in terms of integrals. Garsia, Rodemich and Rumsey inequality
is a generalization and can be used in a wide variety of contexts.



6 CHAPTER 1. BROWNIAN MOTION

Theorem 1.3. Let Ψ(·) and p(·) be continuous strictly increasing functions on
[0 ,∞) with p(0) = Ψ(0) = 0 and Ψ(x) → ∞ as x → ∞. Assume that a
continuous function f(·) on [0 , 1] satisfies∫ 1

0

∫ 1

0

Ψ
( |f(t)− f(s)|

p(|t− s|)
)
ds dt = B <∞. (1.5)

Then

|f(0)− f(1)| ≤ 8
∫ 1

0

Ψ−1

(
4B
u2

)
dp(u) (1.6)

The double integral (1.5) has a singularity on the diagonal and its finiteness
depends on f, p and Ψ. The integral in (1.6) has a singularity at u = 0 and its
convergence requires a balancing act between Ψ(·) and p(·). The two conditions
compete and the existence of a pair Ψ(·) , p(·) satisfying all the conditions will
turn out to imply some regularity on f(·).

Let us first assume Theorem 1.3 and illustrate its uses with some examples.
We will come back to its proof at the end of the section. First we remark that
the following corollary is an immediate consequence of Theorem 1.3.

Corollary 1.4. If we replace the interval [0 , 1] by the interval [T1 , T2] so that

BT1,T2 =
∫ T2

T1

∫ T2

T1

Ψ
( |f(t)− f(s)|

p(|t− s|)
)
ds dt

then

|f(T2)− f(T1)| ≤ 8
∫ T2−T1

0

Ψ−1

(
4B
u2

)
dp(u)

For 0 ≤ T1 < T2 ≤ 1 because BT1,T2 ≤ B0,1 = B, we can conclude from (1.5),
that the modulus of continuity $f (δ) satisfies

$f (δ) = sup
0≤s,t≤1
|t−s|≤δ

|f(t)− f(s)| ≤ 8
∫ δ

0

Ψ−1

(
4B
u2

)
dp(u) (1.7)

Proof. (of Corollary). If we map the interval [T1 , T2] into [0 , 1] by t′ = t−T1
T2−T1

and redefine f ′(t) = f(T1 + (T2 − T1)t) and p′(u) = p((T2 − T1)u), then∫ 1

0

∫ 1

0

Ψ
[ |f ′(t)− f ′(s)|

p′(|t− s|)
]
ds dt

=
1

(T2 − T1)2

∫ T2

T1

∫ T2

T1

Ψ
[ |f(t)− f(s)|
p(|t− s|)

]
ds dt

=
BT1,T2

(T2 − T1)2
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and

|f(T2)− f(T1)| = |f ′(1)− f ′(0)|

≤ 8
∫ 1

0

Ψ−1

(
4BT1,T2

(T2 − T1)2 u2

)
dp′(u)

= 8
∫ (T2−T1)

0

Ψ−1

(
4BT1,T2

u2

)
dp(u)

In particular (1.7) is now an immediate consequence.

Let us now turn to Brownian motion or more generally processes that satisfy

EP

[
|x(t)− x(s)|β

]
≤ C|t− s|1+α

on [0 , 1]. We know from Theorem 1.1 that the paths can be chosen to be con-
tinuous. We will now show that the continuous version enjoys some additional
regularity. We apply Theorem 1.3 with Ψ(x) = xβ , and p(u) = u

γ
β . Then

EP

[ ∫ 1

0

∫ 1

0

Ψ
( |x(t)− x(s)|

p(|t− s|)
)
ds dt

]
=

∫ 1

0

∫ 1

0

EP

[ |x(t) − x(s)|β
|t− s|γ

]
dsdt

≤ C

∫ 1

0

∫ 1

0

|t− s|1+α−γ dsdt

= C Cδ

where Cδ is a constant depending only on δ = 2 + α − γ and is finite if δ > 0.
By Fubini’s theorem, almost surely∫ 1

0

∫ 1

0

Ψ
( |x(t)− x(s)|

p(|t− s|)
)
ds dt = B(ω) <∞

and by Tchebychev’s inequality

P
[
B(ω) ≥ B

] ≤ C Cδ

B
.

On the other hand

8
∫ h

0

(
4B
u2

)
1
β du

γ
β = 8

γ

β
(4B)

1
β

∫ h

0

u
γ−2

β −1du

= 8
γ

γ − 2
(4B)

1
β h

γ−2
β

We obtain Holder continuity with exponent γ−2
β which can be anything less than

α
β . For Brownian motion α = β

2 − 1 and therefore α
β can be made arbitrarily

close to 1
2 .
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Remark 1.2. With probability 1 Brownian paths satisfy a Holder condition with
any exponent less than 1

2 .

It is not hard to see that they do not satisfy a Holder condition with exponent
1
2

Exercise 1.1. Show that

P
[

sup
0≤s, t≤1

|x(t) − x(s)|√|t− s| = ∞]
= 1.

Hint: The random variables x(t)−x(s)√
|t−s| have standard normal distributions for

any interval [s, t] and they are independent for disjoint intervals. We can find
as many disjoint intervals as we wish and therefore dominate the Holder con-
stant from below by the supremum of absolute values of an arbitrary number
of independent Gaussians.

Exercise 1.2. (Precise modulus of continuity). The choice of Ψ(x) = exp[αx2]
with α < 1

2 and p(u) = u
1
2 produces a modulus of continuity of the form

$x(δ) ≤ 8
∫ δ

0

√
1
α

log
[
1 +

4B
u2

] 1
2
√
u
du

that produces eventually a statement

P
[
lim sup

δ→0

$x(δ)√
δ log 1

δ

≤ 16
]

= 1.

Remark 1.3. This is almost the final word, because the argument of the previous
exercise can be tightened slightly to yield

P
[
lim sup

δ→0

$x(δ)√
δ log 1

δ

≥
√

2
]

= 1

and according to a result of Paul Lévy

P
[
lim sup

δ→0

$x(δ)√
δ log 1

δ

=
√

2
]

= 1.

Proof. (of Theorem 1.3.) Define

I(t) =
∫ 1

0

Ψ
( |f(t)− f(s)|

p(|t− s|)
)
ds

and

B =
∫ 1

0

I(t) dt
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There exists t0 ∈ (0 , 1) such that I(t0) ≤ B. We shall prove that

|f(0)− f(t0)| ≤ 4
∫ 1

0

Ψ−1

(
4B
u2

)
dp(u) (1.8)

By a similar argument

|f(1)− f(t0)| ≤ 4
∫ 1

0

Ψ−1

(
4B
u2

)
dp(u)

and combining the two we will have (1.6). To prove 1.8 we shall pick recursively
two sequences {un} and {tn} satisfying

t0 > u1 > t1 > u2 > t2 > · · · > un > tn > · · ·
in the following manner. By induction, if tn−1 has already been chosen, define

dn = p(tn−1)

and pick un so that p(un) = dn

2 . Then∫ un

0

I(t) dt ≤ B

and ∫ un

0

Ψ
( |f(tn−1)− f(s)|

p(|tn−1 − s|)
)
ds ≤ I(tn−1)

Now tn is chosen so that

I(tn) ≤ 2B
un

and

Ψ
( |f(tn)− f(tn−1)|

p(|tn − tn−1|)
)
≤ 2

I(tn−1)
un

≤ 4B
un−1 un

≤ 4B
u2

n

We now have

|f(tn)− f(tn−1)| ≤ Ψ−1

(
4B
u2

n

)
p(tn−1 − tn) ≤ Ψ−1

(
4B
u2

n

)
p(tn−1).

p(tn−1) = 2p(un) = 4[p(un)− 1
2
p(un)] ≤ 4[p(un)− p(un+1)]

Then,

|f(tn)− f(tn−1)| ≤ 4Ψ−1

(
4B
u2

n

)
[p(un)− p(un+1)] ≤ 4

∫ un

un+1

Ψ−1

(
4B
u2

)
dp(u)

Summing over n = 1, 2, · · · , we get

|f(t0)− f(0)| ≤ 4
∫ u1

0

Ψ−1

(
4B
u2

)
p(du) ≤ 4

∫ u1

0

Ψ−1

(
4B
u2

)
p(du)

and we are done.
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Example 1.1. Let us consider a stationary Gaussian process with

ρ(t) = E[X(s)X(s+ t)]

and denote by

σ2(t) = E[(X(t)−X(0))2] = 2(ρ(0)− ρ(t)).

Let us suppose that σ2(t) ≤ C| log t|−a for some a > 1 and C < ∞. Then we
can apply Theorem 1.3 and establish the existence of an almost sure continuous
version by a suitable choice of Ψ and p.

On the other hand we will show that, if σ2(t) ≥ c| log t|−1, then the paths are
almost surely unbounded on every time interval. It is generally hard to prove
that some thing is unbounded. But there is a nice trick that we will use. One
way to make sure that a function f(t) on t1 ≤ t ≤ t2 is unbounded is to make
sure that the measure µf (A) = LebMes {t : f(t) ∈ A} is not supported on a
compact interval. That can be assured if we show that µf has a density with
respect to the Lebsgue measure on R with a density φf (x) that is real analytic,
which in turn will be assured if we show that

∫ ∞

−∞
|µ̂f (ξ)|eα|ξ| dξ <∞

for some α > 0. By Schwarz’s inequality it is sufficient to prove that

∫ ∞

−∞
|µ̂f (ξ)|2eα|ξ| dξ <∞

for some α > 0. We will prove

∫ ∞

−∞
E

[∣∣∣∣∫ t2

t1

ei ξ X(t) dt

∣∣∣∣2]eαξ dξ <∞

for some α > 0. Sine we can replace α by −α , this will control

∫ ∞

−∞
E

[∣∣∣∣∫ t2

t1

ei ξ X(t) dt

∣∣∣∣2]eα|ξ| dξ <∞
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and we can apply Fubini’s theorem to complete the proof.∫ ∞

−∞
E

[∣∣∣∣∫ t2

t1

ei ξ X(t) dt

∣∣∣∣2]eαξ dξ

=
∫ ∞

−∞
E

[∫ t2

t1

∫ t2

t1

ei ξ (X(t)−X(s)) ds dt

]
eαξ dξ

=
∫ ∞

−∞

∫ t2

t1

∫ t2

t1

E

[
ei ξ (X(t)−X(s))

]
ds dt eαξ dξ

=
∫ ∞

−∞

∫ t2

t1

∫ t2

t1

e−
σ2(t−s)ξ2

2 ds dt eαξ dξ

=
∫ t2

t1

∫ t2

t1

√
2π

σ(t− s)
e

α2

2σ2(t−s)

≤
∫ t2

t1

∫ t2

t1

√
2π

σ(t− s)
e

α2| log |(t−s)||
2c ds dt

<∞

provided α is small enough.

1.4 Brownian Motion as a Martingale

P is the Wiener measure on (Ω, B) where Ω = C[0, T ] and B is the Borel σ-field
on Ω. In addition we denote by Bt the σ-field generated by x(s) for 0 ≤ s ≤ t.
It is easy to see tha x(t) is a martingale with respect to (Ω, Bt, P ), i.e for each
t > s in [0, T ]

EP {x(t)|Bs} = x(s) a.e. P (1.9)

and so is x(t)2 − t. In other words

EP {x(t)2 − t |Fs} = x(s)2 − s a.e. P (1.10)

The proof is rather straight forward. We write x(t) = x(s) + Z where Z =
x(t) − x(s) is a random variable independent of the past history Bs and is
distributed as a Gaussian random variable with mean 0 and variance t − s.
Therefore EP {Z|Bs} = 0 and EP {Z2|Bs} = t− s a.e P . Conversely,

Theorem 1.5. Lévy’s theorem. If P is a measure on (C[0, T ], B) such that
P [x(0) = 0] = 1 and the the functions x(t) and x2(t) − t are martingales with
respect to (C[0, T ], Bt, P ) then P is the Wiener measure.

Proof. The proof is based on the observation that a Gaussian distribution is
determined by two moments. But that the distribution is Gaussian is a conse-
quence of the fact that the paths are almost surely continuous and not part of
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our assumptions. The actual proof is carried out by establishing that for each
real number λ

Xλ(t) = exp
[
λx(t) − λ2

2
t
]

(1.11)

is a martingale with respect to (C[0, T ], Bt, P ). Once this is established it is
elementary to compute

EP
[
exp

[
λ(x(t) − x(s))

]|Bs

]
= exp

[λ2

2
(t− s)

]
which shows that we have a Gaussian Process with independent increments with
two matching moments. The proof of (1.11) is more or less the same as proving
the central limit theorem. In order to prove (2.5) we can assume with out loss
of generality that s = 0 and will show that

EP
[
exp

[
λx(t) − λ2

2
t
]]

= 1 (1.12)

To this end let us define successively τ0,ε = 0,

τk+1,ε = min
[
inf

{
s : s ≥ τk,ε, |x(s) − x(τk,ε)| ≥ ε

}
, t , τk,ε + ε

]
Then each τk,ε is a stopping time and eventually τk,ε = t by continuity of paths.
The continuity of paths also guarantees that |x(τk+1,ε)− x(τk,ε)| ≤ ε. We write

x(t) =
∑
k≥0

[x(τk+1,ε)− x(τk,ε)]

and
t =

∑
k≥0

[τk+1,ε − τk,ε]

To establish (1.12) we calculate the quantity on the left hand side as

lim
n→∞EP

[
exp

[ ∑
0≤k≤n

[
λ[x(τk+1,ε)− x(τk,ε)]− λ2

2
[τk+1,ε − τk,ε]

]]]
and show that it is equal to 1. Let us cosider the σ-field Fk = Bτk,ε

and the
quantity

qk(ω) = EP
[
exp

[
λ[x(τk+1,ε)− x(τk,ε)]− (

λ2

2
+ δ)[τk+1,ε − τk,ε]

]∣∣∣∣Fk

]
where δ = δ(ε, λ) is to be chosen later such that 0 ≤ δ(ε, λ) ≤ 1 and δ(ε, λ) → 0
as ε→ 0 for every fixed λ.

If z and τ are random variables bounded by ε > 0 such that

E[z] = E[z2 − τ ] = 0
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then for any 0 ≤ δ ≤ 1,

E
[
exp[λz − (

λ2

2
+ δ)τ ]

]
≤ E

[
1 + [λz − (

λ2

2
+ δ)τ ] +

1
2
[λz − (

λ2

2
+ δ)τ ]2 + Cλ[|z|3 + τ3]

]
≤ E

[
1− δτ + Cλετ

]
≤ 1

provided δ ≥ Cλε. Clearly there is a choice of δ = δ(ε, λ) → 0 as ε → 0 such
that qk(ω) ≤ 1 for every k and almost all ω. In particular, by induction

EP
[
exp

[ ∑
0≤k≤n

[
λ[x(τk+1,ε)− x(τk,ε)]− (

λ2

2
+ δ)[τk+1,ε − τk,ε]

]]] ≤ 1

for every n, and by Fatou’s lemma

EP
[
exp

[
λ(x(t) − x(0))− (

λ2

2
+ δ)t

]] ≤ 1.

Since ε > 0 is arbitrary we have proved one half of (1.12). The argument actually
proves that

EP
[
exp

[
λ(x(t) − x(s))− λ2

2
(t− s)

]|Fs

] ≤ 1 a.e.

To prove the other half, we t note that Zλ(t) = exp
[
λ(x(t)− x(s))− λ2

2 (t− s)]
is a supermartingale and from Doob’s inequality we can get a tail estiamte

P [ sup
0≤s≤t

|x(s) − x(0)| ≥ `] ≤ 2 exp[− `
2

2t
]

Since this allows us to use the dominated converegence theorem, it will be
sufficient to establish

EP
[
exp

[ ∑
0≤k≤n

[
λ[x(τk+1,ε)− x(τk,ε)]− (

λ2

2
− δ)[τk+1,ε − τk,ε]

]]] ≥ 1

which follows by induction from

E
[
exp[λz − (

λ2

2
− δ)τ ]

]
≥ E

[
1 + [λz − (

λ2

2
− δ)τ ] +

1
2
[λz − (

λ2

2
− δ)τ ]2 − Cλ[|z|3 + τ3]

]
≤ E

[
1 + δτ − Cλετ

]
≥ 1

This completes the proof of the theorem.
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Exercise 1.3. Why does Theorem 1.5 fail for the process x(t) = N(t)− t where
N(t) is the standard Poisson Process with rate 1?

Remark 1.4. One can use the Martingale inequality in order to estimate the
probability P{sup0≤s≤t |x(s)| ≥ `}. For λ > 0, by Doob’s inequality

P
[

sup
0≤s≤t

exp
[
λx(s)− λ2

2
s
] ≥ A

] ≤ 1
A

and

P
[

sup
0≤s≤t

x(s) ≥ `
] ≤ P

[
sup

0≤s≤t
[x(s)− λs

2
] ≥ `− λt

2
]

= P
[

sup
0≤s≤t

[λx(s) − λ2s

2
] ≥ λ` − λ2t2

]
≤ exp[−λ`+

λ2t

2
]

Optimizing over λ > 0, we obtain

P
[

sup
0≤s≤t

x(s) ≥ `
] ≤ exp[− `

2

2t
]

and by symmetry

P
[

sup
0≤s≤t

|x(s)| ≥ `
] ≤ 2 exp[− `

2

2t
]

The estimate is not too bad because by reflection principle

P
[

sup
0≤s≤t

x(s) ≥ `
]

= 2P
[
x(t) ≥ `

]
=

√
2
π t

∫ ∞

`

exp[−x
2

2 t
] dx

Exercise 1.4. One can use the estimate above to prove the result of Paul Lévy

P
[
lim sup

δ→0

sup 0≤s,t≤1
|s−t|≤δ

|x(s) − x(t)|√
δ log 1

δ

=
√

2
]

= 1

We had an exercise in the previous section that established the lower bound.
Let us concentrate on the upper bound. If we define

∆δ(ω) = sup
0≤s,t≤1
|s−t|≤δ

|x(s)− x(t)|

first check that it is sufficient to prove that for any ρ < 1, and a >
√

2

∑
n

P
[
∆ρn(ω) ≥ a

√
nρn log

1
ρ

]
<∞ (1.13)
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To estimate ∆ρn(ω) it is sufficient to estimate supt∈Ij
|x(t) − x(tj)| for kερ

−n

overlapping intervals {Ij} of the form [tj , tj + (1 + ε)ρn ] with length (1 + ε)ρn.
For each ε > 0, kε = ε−1 is a constant such that any interval [s , t] of length no
larger than ρn is completely contained in some Ij with tj ≤ s ≤ tj + ερn. Then

∆ρn(ω) ≤ sup
j

[
sup
t∈Ij

|x(t)− x(tj)|+ sup
tj≤s≤tj+ερn

|x(s)− x(tj)|
]

Therefore, for any a = a1 + a2,

P

[
∆ρn(ω) ≥ a

√
nρn log

1
ρ

]
≤ P

[
sup

j
sup
t∈Ij

|x(t) − x(tj)| ≥ a1

√
nρn log

1
ρ

]
+ P

[
sup

j
sup

tj≤s≤tj+ερn

|x(s)− x(tj)| ≥ a2

√
nρn log

1
ρ

]

≤ 2kερ
−n

[
exp[−a

2
1 nρ

n log 1
ρ

2(1 + ε)ρn
] + exp[−a

2
2 nρ

n log 1
ρ

2ερn
]
]

Since a >
√

2, we can pick a1 >
√

2 and a2 > 0. For ε > 0 sufficiently small
(1.13) is easily verified.
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