
Lecture 1.(Jan 19, 2000)

1. Construct explicitly a continuous function f on S, such that the Fourier
Series of f does not converge uniformly.

2. Show that the Fourier Series of any f , which is Hölder continuous with
some exponent α > 0, converges uniformly.

Lecture 2.(Jan 26, 2000)

1. For the Fejer kernel

SN(f, x) =
1

2π

∫
f(x − y)KN(y)dy

prove the maximal inequality

µ(x : sup
N≥1

|SN(f, x)| ≥ `) ≤ C‖f‖1

`

2. State and prove a reasonable multidimensional analog of the Hardy-
Littlewood maximal inequality. If the maximal function is defined as

Mf(x) = sup
R∈Rx

1

µ(R)

∫
R

|f(y)|dy

where Rx is the class of all rectangles with sides parallel to the axes
that have x as center, is a weak type (1, 1) inequality valid? What if
we allow arbitrary orientation ?

Lecture 3. Feb 2,2000

Lacunary Series: Fourier Series of the form∑
k≥1

ak cos nkx

(for example with nk = 22k
) so that

nk+1 ≥ k(n1 + n2 + . . . + nk)

for every k are called lacunary series. They provide good counter examples.
Such a series behaves like series of independent random variables on the
probability space [−π, π] with the normalized Lebesgue measure dµ = dx

2π
.
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1. On the probability space of [−π, π] with normalized Lebesgue measure
dx
2π

prove the central limit theorem for the random variables

SN =

√
2

N

N∑
j=1

cos njx

by calculating the moments and showing that for every k ≥ 1,

lim
N→∞

1

2π

∫ π

−π

[SN(x)]kdx =
1√
2π

∫ ∞

−∞
yk exp[−y2

2
]dy

2. Construct a sequence of functions

fk(x) =
∑

n

ak,ne
i n x

such that

lim
k→∞

∑
n

|ak,n|p = 0

for every p > 2 while for every ` > 0

lim
k→∞

µ[x : |fk(x)| ≥ `] = 1

so that fk does not go to 0, in any reasonable space of functions.

Lecture 4, Feb 9, 2000

1. Suppose we have in the plane, a function K(x, y) of the form K(θ)
r2 in

polar coordinates. Assume that K(θ) is a nice periodic function of

period 2π that has mean 0, i.e
∫ 2π

0
K(θ)dθ = 0. Compute its Fourier

transform

k(ξ, η) =

∫
R2

exp[i(ξx + ηy)]K(x, y)dxdy

and show that it is a homogeneous function of degree 0.

2. Consider the following class of operators on R2

T̂ f = k(θ)f̂
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where f̂ is the fourier transform of f and θ is the angle in the polar
coordinates (r, θ). Find a representation for T , as a convolution with
a kernel K(x, y) of the type considered in problem 1. Find reasonable
sufficient conditions on k, under which T is a bounded operator from
Lp to Lp for 1 < p < ∞.

3. Is there a generalization to Rd for d > 2?

Lecture 4 Feb 16, 2000.

Q 1. Let u ∈ Wk,p for some positive integer k and 1 < p < ∞. if we define
the translations Ti,h by

Ti,hu = u(x1, . . . , xi−1, xi + h, xi+1, . . . , xd)

show that the limits of difference quotients

Dxi
u = lim

h→0

1

h
[Ti,hu − u]

exist in Wk−1,p and define a bounded operator Dxi
from Wk,p, into Wk−1,p

Q 2. Let d = 1 and u(x) ∈ W1,1 Show that u is continuous at every x and
differentiable in the usual sense at almost all x, i.e for almost all x,

lim
h→0

u(x + h) − u(x)

h
= (Du)(x)

Lectures 5-6 March 1, 2000

Q 1. Suppose f is given by a rational function

f(ei θ) =
|P (ei θ)|2
|Q(ei θ)|2

where P and Q are polynomials and Q has no zeros on the unit circle. Cal-
culate the projection of 1 on the span of {ei kθ : k ≥ 1} and the projection
error.

Q 2. If ∫ 2π

0

log f(θ)dθ = −∞
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show that Hk = Hk+1 for every k.

Q 3. Can you show that if µ ⊥ dθ then again Hk = Hk+1 for all k?

Lectures 7 March 8, 2000

Q 1. Show that the function log |x − y| is a BMO function of x for each y.

Q 2. What about

U(x) =

∫
log |x − y|dµ(y)

for some finite measure µ.

Q 3. A function u(x) is said to be in the class VMO (Vanishing mean
oscillation) if

lim
h→0

sup
Q:|Q|≤h

1

|Q|
∫

Q

|u(x) − uQ|dx = 0

Can you find a function that is BMO but not VMO?

Can you find a function that is VMO but not continuous?
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