
11 Compact Groups. Haar Measure.

A group is a set G with a binary operation G×G → G called multiplication
written as gh ∈ G for g, h ∈ G. It is associative in the sense that (gh)k =
g(hk) for all g, h, k ∈ G. A group also has a special element e called the
identity that satisfies eg = ge = g for all g ∈ G. It is easy to verify that
e is unique. A group also has the property that for each g ∈ G there is
an element h = g−1 such that gh = hg = e. In general it need not be
commutative i.e. gh 6= hg. If gh = hg for all g, h ∈ G the group is called
abelian or commutative.

A topological group is a group with a topology such that the binary
operation G × G → G that sends g, h → gh−1 is continuous. This is seen to
be equivalent to the assumption that the operations G × G → G defined by
g, h → gh and G → G defined by g → g−1 are continuous.

We will assume that our group G as a topological space is a compact met-
ric space. Let B be the class of Borel sets. A measure on G is a nonnegative
measure of total mass 1 on (G,B). A left invariant (right invariant) Haar
measure on G is a measure λ such that λ(g−1A) = λ(A) (λ(Ag−1) = λ(A))
for all A ∈ B. Here g−1A is the set of elemnts of the form g−1h with h ∈ A.
The set Ag−1 is defined similarly.

For any two measures α, β on (G,B) the measure α ∗ β is defined by

α ∗ β(A) =

∫
G

α(Ag−1)dβ(g) =

∫
G

β(g−1A)dα(g)

In terms of integrals

∫
G

f(k)d(α ∗ β)(k) =

∫
G

∫
G

f(gh)dα(g)dβ(h)

Theorem 11.1. The following are equivalent.

1. λ is a left invariant Haar measure on G.

2. λ is a right invariant Haar measure on G.

3. λ is an idempotent i.e λ ∗ λ = λ and λ(U) > 0 for every open set U .

The proof will depend on the following
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Lemma 11.1. α ∗ λ = λ for an α with α(U) > 0 for all open sets U ⊂ G
if and only if λ(g−1A) = λ(A) for all g ∈ G i.e. λ is a left invariant Haar
measure.

Proof. For any bounded continuous function u on G let us define

v(g) = (u ∗ λ)(g) =

∫
G

u(gh)dλ(h)

Then for any a ∈ G

∫
v(ag)dα(g) =

∫
G

∫
G

u(agh)dα(g)dλ(h)

=

∫
G

u(ak)d(α ∗ λ)(k)

=

∫
G

u(ak)dλ(k)

= v(a)

We can take a to be the element where the maximum of v is attained. Then
v(ag) = v(a) for all g in the support of α. In particular v(ag) and therefore
v is a constant. Hence δg ∗ λ = λ or λ is left invariant.

Proof. (of Theorem). If λ is right invariant then λ ∗ δg = λ for all g ∈ G
and by integrating λ ∗ λ = λ and that implies that λ is left invariant as well.
We note that any left or right invriant meausre cannot give zero mass to any
open set because by compactness G can be covered by a finite number of
translates of U .

Theorem 11.2. A left (or right) invariant Haar meausre exists, is unique
and is invariant from the right (left) as well.

Proof. Let us start with any α that gives positive mass to every open set and
consider

λn =
α + α2 + αn

n

Any weak limit λ of λn satisfies α ∗ λ = λ and by lemma such a λ is left and
therefore right invariant. If λ is left invariant then α ∗ λ = λ for any α and
if α is also right invariant then α ∗ λ = α proving uniqueness.
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12 Representations of a Group

Given a group G, a representation π(g) of the group is a continuous map-
ping π(·) of G into nonsingular linear transformations of a finite dimensional
complex vector space V such that π(e) = I and π(gh) = π(g)π(h) for all
g, h ∈ G.

Theorem 12.1. Given a representation π of G on a finite dimensional vec-
tor space V , there is an inner product < v1, v2 > on V , such that each π(g)
is a unitary transformation.

Proof. Let < v1, v2 >0 be any inner product. We define a new inner product

< v1, v2 >=

∫
G

< π(h)v1, π(h)v2 >0 dh

where dh is the unique Haar measure on G. It is seen that

< π(g)v1, π(g)v2 > =

∫
G

< π(h)π(g)v1, π(h)π(g)v2 >0 dh

=

∫
G

< π(hg)v1, π(hg)v2 >0 dh

=

∫
G

< π(h)v1, π(h)v2 >0 dh

=< v1, v2 >

which proves that π(·) are unitary with respect to < ·, · >.

A representation π(·) of G on V is irreducible if there is no proper subspace
W of U other than U itself and the subspace {0} that is left invariant by
{π(g) : g ∈ G}. Since any finite dimensional representation of V can be made
unitary, if W ⊂ U is invariant so is W⊥ and π(·) on V is the direct sum of
π(·) on W and W⊥. It is clear that any finite dmensional representation is a
direct sum of irreducible representations.

Two unitary representations π1 and π2 of G on two vector spaces V1 and
V2 are said to be equivalent if there is a linear isomorphsim T : V1 → V2

such that π2(g)T = Tπ1(g) for all g ∈ G. It is clear that π1 and π2 are
equivalent then either they are both irreducble or neither is. The set of
irreducible representations is naturally divided into equivalence classes. We
denote them by ω ∈ Ω. Each ω is an equivalence class and Ω is the set of all
equivalence classes.

71



Lemma 12.1. If π is an irreducible representation of G on a finite dimen-
sional vector space V , then the inner product that makes the representation
unitary is unique upto a scalar multiple.

Proof. If < ·, · >i: i = 1, 2 are two inner products on V that make π(g)
unitary for all g ∈ G, then

< π(g)u, π(g)v >i=< u, v >i

and if we represent by T any unitary isomorphism between the two in-
ner product spaces {V, < ·, · >1} and {V, < ·, · >2} so that < u, v >1=<
Tu, Tv >2 then

< Tu, Tv >2=< u, v >1=< π(g)u, π(g)v >1=< Tπ(g)u, Tπ(g)v >2

In other words if we denote by T ∗ the adjoint of T , on the inner product
space < ·, · >2

(T ∗T )π(g) ≡ π(g)(T ∗T )

for all g ∈ G. T ∗T is Hermitian and its eigenspaces are left invariant by the
iπ(g) that commute wth it. These eigenspaces have to be trivial because of
rreducibility. That forces T ∗T to be a positive mutiple of identity. The two
inner products are then essentially the same.

Given two representations π1 and π2 on V1 and V2 an intertwining operator
from V1 → V2 is a linear map T such that Tπ1(g) = π2(g)T for all g ∈ G.

Theorem 12.2. Schur’s Lemma. Given two irreducible representaions πi

on Vi any intertwining operator T , it is eiher an isomorphism which makes
the two representations equivalent or T = 0.

Proof. Suppose T has a null space W ⊂ V1. Then if u ∈ W , Tπ1(g)u =
π2(g)Tu = 0 so that π(g)W ⊂ W . Either W = {0} or W = U1 making W
either 0 or one-to-one. By a similar argument the range of T is left invariant
by π2 making T either 0 or onto. Therefore if T is not an isomorpihsm it is
0. Any isomorphism is essentially a unitary isomorphism.

13 Representations of a Compact group.

A natural infinite dimensional representation of a compact group is the (left)
regular representation Lg on L2(G, dg) defined by (Lgu)(h) = u(g−1h) satis-
fying Lg1Lg2 = Lg1g2. From the invariance of the Haar measure Lg is unitary.
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First we prove some facts regarding finite dimensional representations of
compact groups.

Theorem 13.1. Let π be a finite dimnsional irreducible representation of
G in a space of dimension d. Then there is subspace of dimension d2 in
L2(G, dg) that is invariant under both left and right regular representations
and either one on this subspace decomposes into d copies of π. The represen-
tation of this type, i.e. any equivalent representation does not occur in the
orthogonal complement of this d2 dimensional subspace.

Proof. Let π be a representation of G in a finite dimensional space V . Pick
a basis for V and represent π(g) as a unitary matrix {ti,j(g)}. The functions
ti,j(·) are continuous and are in L2(G, dg). Let us see what the left regular
representation Lh does to them.

ti,j(hg) = [π(h)π(g)]i,j =
∑

r

ti,r(h)tr,j(g)

which is the same as

Lhti,j(·) =
∑

r

ti,r(h)tr,j(·)

or for each j the space spanned by {tr,j(·) : 1 ≤ r ≤ d} is invariant under Lh

and transforms like π. Similarly under Rh−1 , the rows {tj,r(·) : 1 ≤ r ≤ d} will
again transform like π. If we can show that {ti,j(·)} are linearly independent
then d2 dimensional space will transform like d copies of π under Lh and Rh.
Consider two representations π1,π2 that are irreducible on V1, V2 and vectors
u1, v1 and u2, v2 in their respective spaces. Then for fixed v1, v2

∫
G

< π1(g)u1, v1 >1 < π2(g)u2, v2 >2dg =< Bu1, u2 >
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defines an operator from V1 → V2 and a calculation

< Bπ1(h)u1, u2 > =

∫
G

< π1(g)π1(h)u1, v1 >1 < π2(g)u2, v2 >2dg

=

∫
G

< π1(gh)u1, v1 >1 < π2(g)u2, v2 >2dg

=

∫
G

< π1(g)u1, v1 >1 < π2(gh−1)u2, v2 >2dg

=

∫
G

< π1(g)u1, v1 >1 < π2(g)π2(h−1)u2, v2 >2dg

=

∫
G

< π1(g)u1, v1 >1 < π2(g)π∗
2(h)u2, v2 >2dg

=< Bu1, π
∗
2(h)u2 >

=< π2(h)Bu1, u2 >

Showing that B intertwines π1 and π2. If the representations are inequivalent
then B = 0. Otherwise, B = c(v1, v2)T where T is the isomorphism between
V1 and V2 that intertwines π1 and π2 and a further calculation of the same
nature shows that c(v1, v2) = c < Tv1, v2 >2. Therefore

∫
G

< π1(g)u1, v1 >1 < π2(g)u2, v2 >2dg = c < Tu1, u2 >2< Tv1, v2 >2

where c = 0 for inequivalent representations. In the equivalent case taking
π ≡ π1 ≡ π2, V = V1 = V2 and T = I,

∫
G

< π(g)u1, v1 > < π(g)u2, v2 >dg = c < u1, u2 >2< v1, v2 >

To calculate c we take u = u1 = u2 and v = v1 = v2

c‖u‖2‖v‖2 =

∫
G

| < π(g)u, v > |2dg =

∫
G

|
∑
i,j

ti,j(g)uivj |2dg

Thus ∫
G

ti,j(g)trs(g)dg = cδirδjs

On the other hand ∑
i,j

|ti,j|2 ≡ d
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so that c = 1
d
. The character of the represenation defined as χπ(g) =

trace π(g) is independent of concrete vector space used for the representation
and ‖χπ‖L2(G,dg) = 1. If π occured again in the orthogonal complement of
the d dimensional space, then that space would have to contain χπ again and
that is not possible.

Now we show that there are lots of finite dimensional representations.

Theorem 13.2. Any right trnaslation Rk defined by (Rku)(h) = u(hk) com-
mutes with Lg. There are compact self adjoint operators that commute with
the family {Lg}. Hence the representation Lg on L2(G, dg) decomposes into a
sum of irreducible finite dimensional represenations. In particular a compact
group has sufficiently many irreducible finite dimensional representations.
More precisely given g 6= e there is one for which π(g) 6= I.

Proof. Clearly
(RkLgu)(h) = (RkLgu)(h) = u(g−1hk)

The integral operators

(Tu)(h) =

∫
G

u(hg)τ(g)dg =

∫
G

u(g)τ(h−1g)dg

commute with Lg and are compact (in fact Hilbert-Schmidt) and self adjoint
provided ∫

G

∫
G

|τ(h−1g)|2dgdh < ∞

and for all k,
τ(k−1) = τ(k)

The eigenspaces of T of finite dimension provide lots of finite dimensional
representations that can then be split up into irreducible pieces. We can check
that the only possible infinite dimensional piece is the null space of T . Let us
write L2(G, dg) = ⊕jVj ⊕ V∞ as the direct sum of finite dimensional pieces
that are invariant under both Lg and Rg if possible an infinite dimensional
piece V∞ that is also invariant under Lg and Rg and has no such nontrivial
finite dimensional invariant subspace. The earlier argument of convolution
by τ can be repeated on V∞ and produces a finite dimensional Lg invariant
subspace, which is a contradiction unless such a convolution is identically 0
on V∞ for all τ . This is seen to be impossible.
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The character χπ(g) determine π completely and for ineuqivalent repre-
sentations they are orthogonal. The cahracters have the additonal property
that χπ(hgh−1) = χπ(g).

Theorem 13.3. Any function u(g) ∈ L2(G, dg) such that u(hgh−1) = u(g)
i.e. Lhu = Rhu for all h ∈ G is spanned by the characters.

Proof. We need to show that if any such u is orthogonal to χπ it is also
orthogonal to all the matrix elements.

∫
G

u(g)tr,s(g)dg =

∫
u(hgh−1)tr,s(g)dg

=

∫
G

u(g)tr,s(h−1gh)dg

=

∫
G

u(g)[π∗(h)π(g)π(h)]r,sdg

=

∫
G

u(g)
∑
i,j

ti,r(h)ti,j(g)tj,s(h)dg

=

∫
G

∫
G

u(g)ti,j(g)ti,r(h)tj,s(h)dgdh

=
∑
i,j

1

d
δi,jδr,s

∫
G

u(g)ti,j(g)dg

=
1

d
δr,s

∫
G

u(g)χπ(g)dg = 0

14 Representations of the permutation group.

Permutations on n symbols is the set of one to one mappings σ of a set
X = {x1, x2, . . . , xn} of n elemnts on to itself. It is a finite group G with n!
elements. Given σ ∈ G we can look at the orbits of σnx and it will partition
the speace X into orbits A1, A2, . . . , Ak consisting of n1 ≥ . . . ≥ nk points so
that n = n1 + · · ·+nk. If σ̂ = sσs−1 is conjugate to σ then the orbits of σ̂ will
be sA1, sA2, . . . , sAk so that the partition n1 ≥ . . . ≥ nk of n into k numbers
will be the same for σ and σ̂. Conversely if σ and σ̂ has the same partition
of n, then the orbits A1, . . . , Ak and B1, . . . , Bk have the same cardinalities.
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We can find s ∈ G that maps Ai → Bi in a one-to-one and onto manner and
we can reduce the problem to the case where Ai = Bi for every i. We can
now relable the points with in each Ai i.e. find a permutation of ni elements,
such that bothe σ and σ̂ look the same on each Ai. We have therefore proved

Theorem 14.1. The number of distinct inequivalent irreducible representa-
tions of G is the same as the number of distinct partitions P(n) of the integer
n.

Just note that they are both equal to the dimension of the subspace X
of functions u satisfying u(h−1gh) = u(g) for all h, g ∈ G. We know that the
characters χπ(g) = trace π(g) of all the equivalence classes of representations
span X so that the number of such equivalence classes is also P(n). We
will now construct a distinct representation for each distinct partition of n.
Given a partition λ of n into n1 ≥ n2 ≥ · · · ≥ nk, we associate a diagram
called the Young diagram corresponding to λ. It looks like

when n = 12 and the partition is 4, 3, 3, 2. A Young tableau t is a diagram λ
with the boxes filled in arbitrarily by the numbers 1, 2, · · · , 8, like

7 4 1
6 5
8 3
2

The rows of the array are of length n1 ≥ · · · ≥ nk. For any diagram there
are n! tableaux. A tabloid is when the order of entries are not relevent. The
tabloid {t} consists of {7, 4, 1}, {6, 5}, {8, 3}, {2}. There are n!

n1!···nk!
tabloids

corresponding to any tableau t of the diagram λ. The subgroup Ct of the
permutaion group consists of permutaions within each column. In our case it
consists of 72 elements an arbitray permutation of 7, 6, 8, 2 and an arbitrary
permutation of 4, 5, 3. For any permutaion s, σ(s) = ±1 is the sign of the
permutation. We define an abstract inner product space V of dimension

n!
n1!···nk!

with the orthonormal basis e{t} as {t} varies over the tabloids of the
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tableau t corresponding to λ. We define n! vectors et in V by

et =
∑
s∈Ct

σ(s)se{t}

The et may not be linearly independent and the span of {et} is denoted by
W . One defines a representation of πλ(g) of the permutation group on W
corresponding to the diagram λ by defining

π(g)et = get

Theorem 14.2. Each πλ is irreducible. For two distinct diagrams they are
inequivalent. We therefore have all the representations.

Proof is broken up into lemmas.

Lemma 14.1.
∑
s∈Ct

σ(s)gse{t} =
∑
s∈Ct

σ(s)gsg−1ge{t} =
∑

gsg−1∈Cgt

σ(s)gsg−1ge{t}

=
∑

s∈Cgt

σ(s)se{gt} = egt

Lemma 14.2. Suppose λ, µ are two different diagrams t a λ-tableau and τ
a µ-tableau. Suppose ∑

s∈Ct

σ(s)e{sτ} 6= 0

Then n1 ≥ m1, n1 + n2 ≥ m1 + m2, · · · where n1, . . . , nk and m1, . . . , m` are
the two partitions corresponding to λ and µ. We say then that λ ≥1 µ. If
λ = µ then the sum is ±et.

Proof. Suppose that two elements a, b are in the same row of τ and in the
same column of t. Then the permutation p = {a ↔ b} is in Ct, spe{t} = se{t},
with σ(sp) + σ(s) = 0. So the sum adds up to 0 which is ruled out. Hence,
no two elements in the same row of τ can be in the same column of t. In
particular t must have atleast as many columns as the number of elements in
the first row of τ proving n1 ≥ m1. A variant of this argument proves λ ≥1 µ.
Suppose now that λ = µ. Again all the elments in any row of τ appear in
different columns of t. So there is a permutation s∗ ∈ Ct such that s∗t = τ .
The sum is unaltered if we replace τ by s∗t except for σ(s∗) = ±1.
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Lemma 14.3. Let u ∈ W corresponding to a diagram µ. Let t be any µ-
tableau. Then ∑

s∈Ct

σ(s)π(s)u = cet

Proof. u is a linear combination of eτ for different λ-tableau τ . Each one
from the previous lemma yields ceτ with c = 0,±1. Add them up!

Let us define
At =

∑
s∈Ct

σ(s)π(s)

We alraedy have an inner product that makes π(s) orthogonal.

< Atu, v > =
∑
s∈Ct

σ(s) < π(s)u, v >

=
∑
s∈Ct

σ(s) < u, π(s−1)v >

=
∑
s∈Ct

σ(s) < u, π(s)v >

=< u, Atv >

because sigma(s−1) = σ(s).

Lemma 14.4. If U is any invariant subspace of V then either U ⊃ W or
U ⊥ W . This proves the irreducibility of W .

Proof. Suppose u ∈ W and t is a λ-tableau. We saw that Atu = ctet for some
constant ct. Suppose for some t, ct 6= 0. Then et ∈ U and hence W ⊂ U . If
ct = 0 for all t, 0 =< Atu, e{t} >=< u, Ate{t} >=< u, et > and u ∈ W⊥.

Lemma 14.5. Let T intertwine the representations on V λ and V µ. Suppose
W λ is not contained in Ker T . Then λ ≥1 µ.

Proof. KerT is invariant under π(g) and if it does not contain W λ it is
orthogonal to it.

0 6= Tet = TAte{t} = AtTe{t}
Te{t} is a combination of e{τ} of µ-tableaux τ . So atleast one of them Ate{τ}
is nonzero forcing λ ≥1 µ.

Lemma 14.6. If T 6= 0 intertwines W λ and W µ, then λ = µ.

Proof. Extend T by making it 0 on (W λ)⊥ and we see that λ ≥1 µ. The
argument is symmetric.
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