
9 Elliptic PDE’s

We will apply the results of singular integrals particularly the estimate that
the Riesz transforms are bounded on evry Lp(R

d) for 1 < p < ∞ to prove
existence of solutions u ∈ W2,p(R

d) for the equation

u(x) −
∑
i,j

ai,j(x)
∂2u

∂xi∂xj
−

∑
j

bj(x)
∂u

∂xj
= f(x)

provided f ∈ Lp and the coefficients of

L =
∑
i,j

ai,j(x)
∂2

∂xi∂xj

+
∑

j

bj(x)
∂

∂xj

satisfy

1. The coefficients {ai,j(x)}, (assumed to satisfy with out loss of generality
the symmetry condition ai,j(x) ≡ aj,i(x)), are unfiformly continuous on
Rd and satisfy

c
∑

j

ξ2
j ≤

∑
i,j

ai,j(x)ξiξj ≤ C
∑

x

i2j (9.1)

for some 0 < c ≤ C < ∞.

2. The coefiicients {bj(x)} are measurable and satisfy

∑
j

|bj(x)|2 ≤ C < ∞ (9.2)

We first derive apriori bounds. We asume that p is arbitrary in the range
1 < p < ∞ but fixed. Let Ap be a bound for the Riesz transforms in Lp(R

d).
If we look at all constant coefficent operators

LQ =
∑

qi,j
∂2

∂xi∂xj

with symmetric matrces Q satsfying the bounds (9.1) by a linear transforma-
tion they can be reduced to the operator ∆ and if ∆u = f and f ∈ Lp(R

d)
we have the bounds

‖uxi,xj
‖p ≤ A2

p‖f‖p
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and factoring in the constants coming from the linear transformation we can
still conclude that there is a constant A = A(p, c, C, d) such that if LQu = f ,
then

‖uxi,xj
‖p ≤ A‖f‖p

Lemma 9.1. If ε ≤ ε0 is small enough and supx∈Rd |ai,j(x) − qi,j | ≤ ε for
some Q satisfying (9.1) we can still conclude that for any u ∈ W2,p that
satisfies ∑

ai,j(x)
∂2u

∂xi∂xj

(x) = f(x)

we must necessarily have a bound

‖uxi,xj
‖p ≤ C‖f‖p

for some C = C(A, d, ε0) independently of u. Consequently if u is supported
in a ball where |ai,j(x) − qi,j| ≤ ε0 and

∑
ai,j(x)

∂2u

∂xi∂xj
(x) = f(x)

then again
‖uxi,xj

‖p ≤ C‖f‖p

Proof. Let us compute

LQu =
∑
i,j

qi,jui,j =
∑
i.j

ai,j(x)ui,j(x) −
∑
i,j

[ai,j(x) − qi.j ]ui,j(x)

= f −
∑
i,j

εi,j(x)ui,j(x)

‖LQu‖p ≤ ‖f‖p + ε0d
2 sup

i,j
‖ui,j‖p

On the other hand

sup
i,j

‖ui,j‖p ≤ A‖LQu‖p ≤ A‖f‖p + Aε0d
2 sup

i,j
‖ui,j‖p

If ε0 is chosen so that Aε0d
2 ≤ 1

2
, then

sup
i,j

‖ui,j‖p ≤ 2A‖f‖p

For the second part we alter the coeffecients outside the support of u so that
we are back in a situation where we can apply the first part.
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We now consider a ball of radius δ < 1 small enough that if x0 is the center
of the ball and x is any point in the ball, then |ai,j(x) − ai,j(x0)| ≤ ε0. This
is possible because of uniform continuity of the coeffecients {ai,j(x)}. Let Bδ

be such a ball, and let
Lu = f in Bδ

Theorem 9.1. There is a constant C such that for any ρ < 1

sup
i,j

‖ui,j‖p,Bρδ
≤ C[‖f‖p,Bδ

+ δ−1(1 − ρ)−1‖∇u‖p,Bδ
+ δ−2(1 − ρ)−2‖u‖p,Bδ

]

(9.3)

Proof. Let us for the moment take δ = 1 and construct a smooth function
φ = φρ such that φ = 1 on Bρ and 0 outside B1. We can assume that
|∇φ| ≤ C(1 − ρ)−1 and |∇∇φ| ≤ C(1 − ρ)−2. We take v = uφ and compute

g =
∑
i,j

ai,j(x)vi,j(x) =
∑
i,j

ai,j(x)(φu)i,j(x)

= φ
∑
i,j

ai,j(x)ui,j(x) + 2
∑

ai,j(x)φi(x)uj(x) + u(x)
∑
i,j

ai,j(x)φi,j(x)

= φ(x)f(x) − φ(x)
∑

bj(x)uj(x) + 2
∑

ai,j(x)φi(x)uj(x)

+ u(x)
∑
i,j

ai,j(x)φi,j(x)

We can bound

|g| ≤ |f(x)| + C(1 − ρ)−1‖∇u‖(x) + C(1 − ρ)−2|u|(x)

From the previous lemma we can get

sup
i,j

‖vi,j‖p,B1 ≤ A‖g‖p,B1 ≤ C[‖f‖p,B1 +(1−ρ)−1‖∇u‖p,B1 +(1−ρ)−2‖u‖p,B1]

Since v = u on Bρ we get

sup
i,j

‖ui,j‖p,Bρ ≤ C[‖f‖p,B1 + (1 − ρ)−1‖∇u‖p,B1 + (1 − ρ)−2‖u‖p,B1]

If δ < 1 we can redefine all functions involved as u(δx), f(δx), ai,j(δx) and
δbj(δx). With the new operator

Lδ =
∑

ai,j(δx)
∂2

∂xi∂xj
+

∑
δbj(δx)

∂

∂xj
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we see that
Lδu(δx) = δ2f(δx)

We can now apply our estimate with δ = 1 and obtain

sup
i,j

‖ui,j‖p,Bδρ
≤ C[‖f‖p,Bδ

+ δ−1(1 − ρ)−1‖∇u‖p,Bδ
+ δ−2(1 − ρ)−2‖u‖p,Bδ

]

At this point we can do one of two things. If we are interested only in
dealing with all of Rd we can raise the estimate (9.3) to the power p and sum
over a fine enough grid so that

0 < a <
∑

α

1B(xα,δρ) ≤
∑

α

1B(xα,δ) ≤ A < ∞

and we will get

sup
i,j

‖ui,j‖p ≤ C[‖f‖p + δ−1(1 − ρ)−1‖∇u‖p + δ−2(1 − ρ)−2‖u‖p]

Since δ > 0 is fixed (depending on the modulus of continuity of {ai,j(x)})
and we could have fixed ρ = 1

2
, we have the following global estimate for any

u ∈ W2,p satisfyng Lu = f . The constant C depends only on the ellipticity
bounds in (9.1), the bounds in (9.2) and the modulus of continuty estimates
of {ai,j(x)}.

sup
i,j

‖ui,j‖p ≤ C[‖f‖p + ‖∇u‖p + ‖u‖p] (9.4)

Lemma 9.2. For any constant ε > 0, there is a constant Cε such that for
any u ∈ W2,p

‖∇u‖p ≤ ε sup
i,j

‖ui,j‖p + Cε−1‖u‖p (9.5)

Proof. First we note that it is sufficient to prove an estimate of the type

‖∇u‖p ≤ C[sup
i,j

‖ui,j‖p + ‖u‖p] (9.6)

We can then replace u(x) by u(λx) and the estimate takes the form

λ‖∇u‖p ≤ C[λ2 sup
i,j

‖ui,j‖p + ‖u‖p]
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If choosing λ = Cε the lemma is seen to be true. To prove (9.6) we basically
need a one dimensional estimate. If we have

∫ ∞

−∞
|g′(x)|pdx ≤ C

∫ ∞

−∞
|g′′(x)|pdx + C

∫ ∞

−∞
|g(x)|pdx

on R, we could get the estimate on each line and then integrate it. The
inequality itself needs to be proved only for the unit interval [0, 1]. We can
then translate and sum. It is quite easy to prove

sup
0≤x≤1

|g′(x)| ≤ C[

∫ 1

0

|g′′(x)|dx +

∫ 1

0

|g(x)|dx]

Our basic apriori estmate becomes

Theorem 9.2. Any function u ∈ W2,p with Lu = f satisfies

sup
i,j

‖ui,j‖p ≤ C[‖f‖p + ‖u‖p] (9.7)

Proof. Just choose ε in (9.5) so that Cε < 1
2

where C is the constant in
(9.4).

We have to work a little harder If we want to prove a local regularity estimate
of the form

Theorem 9.3. Let Ω ⊂ Ω̄ ⊂ Ω′ be bounded sets. For any u ∈ W2,p(Ω
′) with

Lu = f , we have the bounds

‖ui,j‖p,Ω ≤ C(Ω, Ω′)[‖f‖p,Ω′ + ‖u‖p,Ω′] (9.8)

Proof. The trick is to go back and change the definition of φρ so that it
vanishes outside the ball of radius 1+ρ

2
rather than outside the ball of radius

1. It does not change much since (1 − 1+ρ
2

) = 1
2
(1 − ρ). We start with the

modified version of (9.3)

sup
i,j

‖ui,j‖p,Bρ ≤ C[‖f‖p,B1 + (1 − ρ)−1‖∇u‖p,B1+
ρ
2

+ (1 − ρ)−2‖u‖p,B1]
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and define

T2 = sup
1
2
<ρ<1

(1 − ρ)2 sup
i,j

‖ui,j‖p,Bρ

T1 = sup
1
2
<ρ<1

(1 − ρ)‖∇u‖p,Bρ

T0 = sup
1
2
<ρ<1

‖u‖p,Bρ = ‖u‖p,B1

We see that
T2 ≤ C[‖f‖p,B1 + T1 + T0]

Assume a uniform interpolation inequality for all balls of radius 1
2
≤ ρ ≤ 1

of the type,
‖∇u‖p,Bρ ≤ ε sup

i,j
‖ui,j‖p,Bρ + Cε−1‖u‖p,Bρ

for any choice of ε > 0, that translates to

T1 ≤ εT2 + Cε−1T0

and with the right chice of ε we get

T2 ≤ C[‖f‖p,B1 + ‖u‖p,B1]

In particular

‖ui,j‖p,Bρ ≤ C(1 − ρ)−2 [‖f‖p,B1 + ‖u‖p,B1]

With rescaling for δ1 < δ2 < δ0,

‖ui,j‖p,Bδ1
≤ C(δ1, δ2) [‖f‖p,Bδ2

+ ‖u‖p,Bδ2
]

Covering Ω̄ by a finite number of balls of radius δ1, such that the concentric
balls of radius δ2 are still contained in Ω′ we get our result.

Finally we prove the interpolation lemma for balls.

Lemma 9.3. Given u ∈ W2,p,B1 it can be extended as a function v on Rd

supported on B2 such that

‖∇∇v‖p,Rd ≤ C[‖∇∇u‖p,B1 + ‖∇u‖p,B1]

‖∇v‖p,Rd ≤ C‖∇u‖p,B1

‖v‖p,Rd ≤ C‖u‖p,B1
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Proof. Basically if we want a function which is smooth inside B1 and outside
B1 to be globally in W2,p the function and its derivatives have to match
on the boundary. The usual reflection with v(1 + r, s) = u(1 − r, s) for
small r matches the function and tangential derivatives but not the normal
derivative. v(1+r, s) = c1u(1−r, s)+c2u(1−2r, s) works for a proper choice
of c1 and c2. We use it to extend to B 3

2
and then a radial cutoff to kill it

outside B2. For the extended function v we have the interpolation inequality

‖∇v‖p,Rd ≤ ε‖∇∇u‖p,Rd + Cε−1‖u‖p,Rd

and this implie for the original u

‖∇u‖p,B1 ≤ Cε‖∇∇u‖p,B1 + Cε‖∇u‖p,B1 + Cε−1‖u‖p,B1

which is easily turned into

‖∇u‖p,B1 ≤ ε‖∇∇u‖p,B1 + Cε−1‖u‖p,B1

Finally we prove an existence theorem for solutions of u − Lu = f .

Theorem 9.4. The equation

u − Lu = f

has a solution in W2,p for each f ∈ Lp.

Proof. We wish to invert (I − L). Suppose we can invert (I − L1). Then

(I −L2)
−1 = [(I −L1)− (L2 −L1)]

−1 = [I −L1]
−1[I − (L2 −L1)(I −L1)

−1]−1

As long as ‖(L2 − L1)(I − L1)
−1‖ < 1 as an operator mapping Lp → Lp,

(I − L2)
−1 will map Lp into W2,p. We can perturb the operators from ∆

to any L nicely in small steps so that ‖L1 − L2‖ < δ as operators from
W2,p → Lp. All we need are uniform apriori bounds on ‖(I − L)−1f‖p.

Theorem 9.5. Any solution u of u − Lu = f with L satisfying (9.1) and
(9.2) also satisfies a bound of the form

‖u‖p ≤ C‖f‖p

with a constant that does not depend on L or f .
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The proof depend on lemmas.

Lemma 9.4 (Maximum Principle). Suppose u ∈ W2,p satisfies u−Lu ≥
0 in a possibly unbounded region G and p is large enough that Sobolev imbed-
ding applies and u is bounded and continuous on Ḡ. If in addition u ≥ 0
on ∂G then u ≥ 0 on Ḡ. In particular if u and v are two functions wth
u − Lu ≥ v − Lv in G and u ≥ v on ∂G, then u ≥ v on Ḡ.

Lemma 9.5. If u − Lu = 0 in a ball B(x, δ) of radius δ, then

|u(x)| ≤ ρ(δ) sup
y:|y−x|=δ

|u(y)|

Proof. We can cssume with out loss of generality that x = 0. Consider the
function

φ(x) = exp[−c(1 − |x|2
δ2

)]

For some c = c(δ) > 0 small enough,φ−Lφ ≥ 0 and φ = 1 on the boundary.
Therefore

|u(0)| ≤ φ(0) sup
y:|y|=δ

|u(y)|

and we can take ρ(δ) = exp[−c(δ)].

Lemma 9.6. If u is a bounded solution of u − Lu = 0 outside some ball
|x| ≥ r then for some c > 0 and C < ∞,

sup
|x|=R

|u(x)| ≤ Ce−c(R−r) sup
|x|=r

|u(x)|

Proof. By the previous two lemmas

sup
|x|=r+δ

|u(x)| ≤ ρ(δ) sup
|x|=r

|u(x)|

The lemma is now easily proved by induction.

Suppose L is given and we modify L outside a ball B(x0, 4δ) to get L′

which has coeffecients {a′
i,j(x)} that are uniformly close to some constant ci,j

and {b′j(x)} are 0 in the complement of the ball. For δ small it is easy to see
that our basic perturbation argument works for L′ and

u − L′u = f
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has a solution in W2,p for f ∈ Lp. In particular if f ≥ 0 is supported inside
B(x0, δ), L′u = u outside the ball and if u ∈ W2,p, it is in some better Lp1 by
Sobolev’s lemma. We can iterate this process and obtain eventually an L∞
bound of the form

sup
|x−x0|=2δ

|u(x)| ≤ C‖f‖p

If we now compare the solutions u−L′u = f and v −Lv = f , both of which
are nonnegative, since L = L′ inside B(x0, 4δ), we have

(u − v) − L(u − v) = 0

Therefore

sup
|x−x0|=2δ

|u(x) − v(x)| ≤ ρ(δ) sup
|x−x0|=4δ

|u(x) − v(x)|

From this we conclude that

sup
|x−x0|=2δ

v(x) ≤ sup
|x−x0|=2δ

u(x) + ρ(δ)[ sup
|x−x0|=4δ

u(x) + sup
|x−x0|=4δ

v(x)]

But
sup

|x−x0|=4δ

v(x) ≤ ρ(δ) sup
|x−x0|=2δ

v(x)

and
sup

|x−x0|=4δ

u(x) ≤ ρ(δ) sup
|x−x0|=2δ

u(x)

We see now that

sup
|x−x0|=2δ

v(x) ≤ C(δ) sup
|x−x0|=2δ

u(x) ≤ C‖f‖p

Now one can estimate ‖v‖p ≤ C‖f‖p.
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