9 Elliptic PDE's

We will apply the results of singular integrals particularly the estimate that the Riesz transforms are bounded on evry $L_{p}\left(R^{d}\right)$ for $1<p<\infty$ to prove existence of solutions $u \in W_{2, p}\left(R^{d}\right)$ for the equation

$$
u(x)-\sum_{i, j} a_{i, j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}-\sum_{j} b_{j}(x) \frac{\partial u}{\partial x_{j}}=f(x)
$$

provided $f \in L_{p}$ and the coefficients of

$$
L=\sum_{i, j} a_{i, j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{j} b_{j}(x) \frac{\partial}{\partial x_{j}}
$$

satisfy

1. The coefficients $\left\{a_{i, j}(x)\right\}$, (assumed to satisfy with out loss of generality the symmetry condition $\left.a_{i, j}(x) \equiv a_{j, i}(x)\right)$, are unfiformly continuous on R^{d} and satisfy

$$
\begin{equation*}
c \sum_{j} \xi_{j}^{2} \leq \sum_{i, j} a_{i, j}(x) \xi_{i} \xi_{j} \leq C \sum_{x} i_{j}^{2} \tag{9.1}
\end{equation*}
$$

for some $0<c \leq C<\infty$.
2. The coefiicients $\left\{b_{j}(x)\right\}$ are measurable and satisfy

$$
\begin{equation*}
\sum_{j}\left|b_{j}(x)\right|^{2} \leq C<\infty \tag{9.2}
\end{equation*}
$$

We first derive apriori bounds. We asume that p is arbitrary in the range $1<p<\infty$ but fixed. Let A_{p} be a bound for the Riesz transforms in $L_{p}\left(R^{d}\right)$. If we look at all constant coefficent operators

$$
L_{Q}=\sum q_{i, j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}
$$

with symmetric matrces Q satsfying the bounds (9.1) by a linear transformation they can be reduced to the operator Δ and if $\Delta u=f$ and $f \in L_{p}\left(R^{d}\right)$ we have the bounds

$$
\left\|u_{x_{i}, x_{j}}\right\|_{p} \leq A_{p}^{2}\|f\|_{p}
$$

and factoring in the constants coming from the linear transformation we can still conclude that there is a constant $A=A(p, c, C, d)$ such that if $L_{Q} u=f$, then

$$
\left\|u_{x_{i}, x_{j}}\right\|_{p} \leq A\|f\|_{p}
$$

Lemma 9.1. If $\epsilon \leq \epsilon_{0}$ is small enough and $\sup _{x \in R^{d}}\left|a_{i, j}(x)-q_{i, j}\right| \leq \epsilon$ for some Q satisfying (9.1) we can still conclude that for any $u \in W_{2, p}$ that satisfies

$$
\sum a_{i, j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(x)=f(x)
$$

we must necessarily have a bound

$$
\left\|u_{x_{i}, x_{j}}\right\|_{p} \leq C\|f\|_{p}
$$

for some $C=C\left(A, d, \epsilon_{0}\right)$ independently of u. Consequently if u is supported in a ball where $\left|a_{i, j}(x)-q_{i, j}\right| \leq \epsilon_{0}$ and

$$
\sum a_{i, j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(x)=f(x)
$$

then again

$$
\left\|u_{x_{i}, x_{j}}\right\|_{p} \leq C\|f\|_{p}
$$

Proof. Let us compute

$$
\begin{gathered}
L_{Q} u=\sum_{i, j} q_{i, j} u_{i, j}=\sum_{i . j} a_{i, j}(x) u_{i, j}(x)-\sum_{i, j}\left[a_{i, j}(x)-q_{i . j}\right] u_{i, j}(x) \\
=f-\sum_{i, j} \epsilon_{i, j}(x) u_{i, j}(x) \\
\left\|L_{Q} u\right\|_{p} \leq\|f\|_{p}+\epsilon_{0} d^{2} \sup _{i, j}\left\|u_{i, j}\right\|_{p}
\end{gathered}
$$

On the other hand

$$
\sup _{i, j}\left\|u_{i, j}\right\|_{p} \leq A\left\|L_{Q} u\right\|_{p} \leq A\|f\|_{p}+A \epsilon_{0} d^{2} \sup _{i, j}\left\|u_{i, j}\right\|_{p}
$$

If ϵ_{0} is chosen so that $A \epsilon_{0} d^{2} \leq \frac{1}{2}$, then

$$
\sup _{i, j}\left\|u_{i, j}\right\|_{p} \leq 2 A\|f\|_{p}
$$

For the second part we alter the coeffecients outside the support of u so that we are back in a situation where we can apply the first part.

We now consider a ball of radius $\delta<1$ small enough that if x_{0} is the center of the ball and x is any point in the ball, then $\left|a_{i, j}(x)-a_{i, j}\left(x_{0}\right)\right| \leq \epsilon_{0}$. This is possible because of uniform continuity of the coeffecients $\left\{a_{i, j}(x)\right\}$. Let B_{δ} be such a ball, and let

$$
L u=f \text { in } B_{\delta}
$$

Theorem 9.1. There is a constant C such that for any $\rho<1$

$$
\begin{equation*}
\sup _{i, j}\left\|u_{i, j}\right\|_{p, B_{\rho \delta}} \leq C\left[\|f\|_{p, B_{\delta}}+\delta^{-1}(1-\rho)^{-1}\|\nabla u\|_{p, B_{\delta}}+\delta^{-2}(1-\rho)^{-2}\|u\|_{p, B_{\delta}}\right] \tag{9.3}
\end{equation*}
$$

Proof. Let us for the moment take $\delta=1$ and construct a smooth function $\phi=\phi_{\rho}$ such that $\phi=1$ on B_{ρ} and 0 outside B_{1}. We can assume that $|\nabla \phi| \leq C(1-\rho)^{-1}$ and $|\nabla \nabla \phi| \leq C(1-\rho)^{-2}$. We take $v=u \phi$ and compute

$$
\begin{aligned}
& g= \sum_{i, j} a_{i, j}(x) v_{i, j}(x)=\sum_{i, j} a_{i, j}(x)(\phi u)_{i, j}(x) \\
&=\phi \sum_{i, j} a_{i, j}(x) u_{i, j}(x)+2 \sum a_{i, j}(x) \phi_{i}(x) u_{j}(x)+u(x) \sum_{i, j} a_{i, j}(x) \phi_{i, j}(x) \\
&=\phi(x) f(x)-\phi(x) \sum b_{j}(x) u_{j}(x)+2 \sum a_{i, j}(x) \phi_{i}(x) u_{j}(x) \\
& \quad+u(x) \sum_{i, j} a_{i, j}(x) \phi_{i, j}(x)
\end{aligned}
$$

We can bound

$$
|g| \leq|f(x)|+C(1-\rho)^{-1}\|\nabla u\|(x)+C(1-\rho)^{-2}|u|(x)
$$

From the previous lemma we can get

$$
\sup _{i, j}\left\|v_{i, j}\right\|_{p, B_{1}} \leq A\|g\|_{p, B_{1}} \leq C\left[\|f\|_{p, B_{1}}+(1-\rho)^{-1}\|\nabla u\|_{p, B_{1}}+(1-\rho)^{-2}\|u\|_{p, B_{1}}\right]
$$

Since $v=u$ on B_{ρ} we get

$$
\sup _{i, j}\left\|u_{i, j}\right\|_{p, B_{\rho}} \leq C\left[\|f\|_{p, B_{1}}+(1-\rho)^{-1}\|\nabla u\|_{p, B_{1}}+(1-\rho)^{-2}\|u\|_{p, B_{1}}\right]
$$

If $\delta<1$ we can redefine all functions involved as $u(\delta x), f(\delta x), a_{i, j}(\delta x)$ and $\delta b_{j}(\delta x)$. With the new operator

$$
L_{\delta}=\sum a_{i, j}(\delta x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum \delta b_{j}(\delta x) \frac{\partial}{\partial x_{j}}
$$

we see that

$$
L_{\delta} u(\delta x)=\delta^{2} f(\delta x)
$$

We can now apply our estimate with $\delta=1$ and obtain

$$
\sup _{i, j}\left\|u_{i, j}\right\|_{p, B_{\delta \rho}} \leq C\left[\|f\|_{p, B_{\delta}}+\delta^{-1}(1-\rho)^{-1}\|\nabla u\|_{p, B_{\delta}}+\delta^{-2}(1-\rho)^{-2}\|u\|_{p, B_{\delta}}\right]
$$

At this point we can do one of two things. If we are interested only in dealing with all of R^{d} we can raise the estimate (9.3) to the power p and sum over a fine enough grid so that

$$
0<a<\sum_{\alpha} \mathbf{1}_{B\left(x_{\alpha}, \delta \rho\right)} \leq \sum_{\alpha} \mathbf{1}_{B\left(x_{\alpha}, \delta\right)} \leq A<\infty
$$

and we will get

$$
\sup _{i, j}\left\|u_{i, j}\right\|_{p} \leq C\left[\|f\|_{p}+\delta^{-1}(1-\rho)^{-1}\|\nabla u\|_{p}+\delta^{-2}(1-\rho)^{-2}\|u\|_{p}\right]
$$

Since $\delta>0$ is fixed (depending on the modulus of continuity of $\left\{a_{i, j}(x)\right\}$) and we could have fixed $\rho=\frac{1}{2}$, we have the following global estimate for any $u \in W_{2, p}$ satisfyng $L u=f$. The constant C depends only on the ellipticity bounds in (9.1), the bounds in (9.2) and the modulus of continuty estimates of $\left\{a_{i, j}(x)\right\}$.

$$
\begin{equation*}
\sup _{i, j}\left\|u_{i, j}\right\|_{p} \leq C\left[\|f\|_{p}+\|\nabla u\|_{p}+\|u\|_{p}\right] \tag{9.4}
\end{equation*}
$$

Lemma 9.2. For any constant $\epsilon>0$, there is a constant C_{ϵ} such that for any $u \in W_{2, p}$

$$
\begin{equation*}
\|\nabla u\|_{p} \leq \epsilon \sup _{i, j}\left\|u_{i, j}\right\|_{p}+C \epsilon^{-1}\|u\|_{p} \tag{9.5}
\end{equation*}
$$

Proof. First we note that it is sufficient to prove an estimate of the type

$$
\begin{equation*}
\|\nabla u\|_{p} \leq C\left[\sup _{i, j}\left\|u_{i, j}\right\|_{p}+\|u\|_{p}\right] \tag{9.6}
\end{equation*}
$$

We can then replace $u(x)$ by $u(\lambda x)$ and the estimate takes the form

$$
\lambda\|\nabla u\|_{p} \leq C\left[\lambda^{2} \sup _{i, j}\left\|u_{i, j}\right\|_{p}+\|u\|_{p}\right]
$$

If choosing $\lambda=C \epsilon$ the lemma is seen to be true. To prove (9.6) we basically need a one dimensional estimate. If we have

$$
\int_{-\infty}^{\infty}\left|g^{\prime}(x)\right|^{p} d x \leq C \int_{-\infty}^{\infty}\left|g^{\prime \prime}(x)\right|^{p} d x+C \int_{-\infty}^{\infty}|g(x)|^{p} d x
$$

on R, we could get the estimate on each line and then integrate it. The inequality itself needs to be proved only for the unit interval $[0,1]$. We can then translate and sum. It is quite easy to prove

$$
\sup _{0 \leq x \leq 1}\left|g^{\prime}(x)\right| \leq C\left[\int_{0}^{1}\left|g^{\prime \prime}(x)\right| d x+\int_{0}^{1}|g(x)| d x\right]
$$

Our basic apriori estmate becomes
Theorem 9.2. Any function $u \in W_{2, p}$ with $L u=f$ satisfies

$$
\begin{equation*}
\sup _{i, j}\left\|u_{i, j}\right\|_{p} \leq C\left[\|f\|_{p}+\|u\|_{p}\right] \tag{9.7}
\end{equation*}
$$

Proof. Just choose ϵ in (9.5) so that $C \epsilon<\frac{1}{2}$ where C is the constant in (9.4).

We have to work a little harder If we want to prove a local regularity estimate of the form

Theorem 9.3. Let $\Omega \subset \bar{\Omega} \subset \Omega^{\prime}$ be bounded sets. For any $u \in W_{2, p}\left(\Omega^{\prime}\right)$ with $L u=f$, we have the bounds

$$
\begin{equation*}
\left\|u_{i, j}\right\|_{p, \Omega} \leq C\left(\Omega, \Omega^{\prime}\right)\left[\|f\|_{p, \Omega^{\prime}}+\|u\|_{p, \Omega^{\prime}}\right] \tag{9.8}
\end{equation*}
$$

Proof. The trick is to go back and change the definition of ϕ_{ρ} so that it vanishes outside the ball of radius $\frac{1+\rho}{2}$ rather than outside the ball of radius 1. It does not change much since $\left(1-\frac{1+\rho}{2}\right)=\frac{1}{2}(1-\rho)$. We start with the modified version of (9.3)

$$
\sup _{i, j}\left\|u_{i, j}\right\|_{p, B_{\rho}} \leq C\left[\|f\|_{p, B_{1}}+(1-\rho)^{-1}\|\nabla u\|_{p, B_{1+\frac{\rho}{2}}}+(1-\rho)^{-2}\|u\|_{p, B_{1}}\right]
$$

and define

$$
\begin{aligned}
& T_{2}=\sup _{\frac{1}{2}<\rho<1}(1-\rho)^{2} \sup _{i, j}\left\|u_{i, j}\right\|_{p, B_{\rho}} \\
& T_{1}=\sup _{\frac{1}{2}<\rho<1}(1-\rho)\|\nabla u\|_{p, B_{\rho}} \\
& T_{0}=\sup _{\frac{1}{2}<\rho<1}\|u\|_{p, B_{\rho}}=\|u\|_{p, B_{1}}
\end{aligned}
$$

We see that

$$
T_{2} \leq C\left[\|f\|_{p, B_{1}}+T_{1}+T_{0}\right]
$$

Assume a uniform interpolation inequality for all balls of radius $\frac{1}{2} \leq \rho \leq 1$ of the type,

$$
\|\nabla u\|_{p, B_{\rho}} \leq \epsilon \sup _{i, j}\left\|u_{i, j}\right\|_{p, B_{\rho}}+C \epsilon^{-1}\|u\|_{p, B_{\rho}}
$$

for any choice of $\epsilon>0$, that translates to

$$
T_{1} \leq \epsilon T_{2}+C \epsilon^{-1} T_{0}
$$

and with the right chice of ϵ we get

$$
T_{2} \leq C\left[\|f\|_{p, B_{1}}+\|u\|_{p, B_{1}}\right]
$$

In particular

$$
\left\|u_{i, j}\right\|_{p, B_{\rho}} \leq C(1-\rho)^{-2}\left[\|f\|_{p, B_{1}}+\|u\|_{p, B_{1}}\right]
$$

With rescaling for $\delta_{1}<\delta_{2}<\delta_{0}$,

$$
\left\|u_{i, j}\right\|_{p, B_{\delta_{1}}} \leq C\left(\delta_{1}, \delta_{2}\right)\left[\|f\|_{p, B_{\delta_{2}}}+\|u\|_{p, B_{\delta_{2}}}\right]
$$

Covering $\bar{\Omega}$ by a finite number of balls of radius δ_{1}, such that the concentric balls of radius δ_{2} are still contained in Ω^{\prime} we get our result.

Finally we prove the interpolation lemma for balls.
Lemma 9.3. Given $u \in W_{2, p, B_{1}}$ it can be extended as a function v on R^{d} supported on B_{2} such that

$$
\begin{aligned}
\|\nabla \nabla v\|_{p, R^{d}} & \leq C\left[\|\nabla \nabla u\|_{p, B_{1}}+\|\nabla u\|_{p, B_{1}}\right] \\
\|\nabla v\|_{p, R^{d}} & \leq C\|\nabla u\|_{p, B_{1}} \\
\|v\|_{p, R^{d}} & \leq C\|u\|_{p, B_{1}}
\end{aligned}
$$

Proof. Basically if we want a function which is smooth inside B_{1} and outside B_{1} to be globally in $W_{2, p}$ the function and its derivatives have to match on the boundary. The usual reflection with $v(1+r, s)=u(1-r, s)$ for small r matches the function and tangential derivatives but not the normal derivative. $v(1+r, s)=c_{1} u(1-r, s)+c_{2} u(1-2 r, s)$ works for a proper choice of c_{1} and c_{2}. We use it to extend to $B_{\frac{3}{2}}$ and then a radial cutoff to kill it outside B_{2}. For the extended function v we have the interpolation inequality

$$
\|\nabla v\|_{p, R^{d}} \leq \epsilon\|\nabla \nabla u\|_{p, R^{d}}+C \epsilon^{-1}\|u\|_{p, R^{d}}
$$

and this implie for the original u

$$
\|\nabla u\|_{p, B_{1}} \leq C \epsilon\|\nabla \nabla u\|_{p, B_{1}}+C \epsilon\|\nabla u\|_{p, B_{1}}+C \epsilon^{-1}\|u\|_{p, B_{1}}
$$

which is easily turned into

$$
\|\nabla u\|_{p, B_{1}} \leq \epsilon\|\nabla \nabla u\|_{p, B_{1}}+C \epsilon^{-1}\|u\|_{p, B_{1}}
$$

Finally we prove an existence theorem for solutions of $u-L u=f$.
Theorem 9.4. The equation

$$
u-L u=f
$$

has a solution in $W_{2, p}$ for each $f \in L_{p}$.
Proof. We wish to invert $(I-L)$. Suppose we can invert $\left(I-L_{1}\right)$. Then
$\left(I-L_{2}\right)^{-1}=\left[\left(I-L_{1}\right)-\left(L_{2}-L_{1}\right)\right]^{-1}=\left[I-L_{1}\right]^{-1}\left[I-\left(L_{2}-L_{1}\right)\left(I-L_{1}\right)^{-1}\right]^{-1}$
As long as $\left\|\left(L_{2}-L_{1}\right)\left(I-L_{1}\right)^{-1}\right\|<1$ as an operator mapping $L_{p} \rightarrow L_{p}$, $\left(I-L_{2}\right)^{-1}$ will map L_{p} into $W_{2, p}$. We can perturb the operators from Δ to any L nicely in small steps so that $\left\|L_{1}-L_{2}\right\|<\delta$ as operators from $W_{2, p} \rightarrow L_{p}$. All we need are uniform apriori bounds on $\left\|(I-L)^{-1} f\right\|_{p}$.

Theorem 9.5. Any solution u of $u-L u=f$ with L satisfying (9.1) and (9.2) also satisfies a bound of the form

$$
\|u\|_{p} \leq C\|f\|_{p}
$$

with a constant that does not depend on L or f.

The proof depend on lemmas.
Lemma 9.4 (Maximum Principle). Suppose $u \in W_{2, p}$ satisfies $u-L u \geq$ 0 in a possibly unbounded region G and p is large enough that Sobolev imbedding applies and u is bounded and continuous on \bar{G}. If in addition $u \geq 0$ on ∂G then $u \geq 0$ on \bar{G}. In particular if u and v are two functions wth $u-L u \geq v-L v$ in G and $u \geq v$ on ∂G, then $u \geq v$ on \bar{G}.

Lemma 9.5. If $u-L u=0$ in a ball $B(x, \delta)$ of radius δ, then

$$
|u(x)| \leq \rho(\delta) \sup _{y:|y-x|=\delta}|u(y)|
$$

Proof. We can cssume with out loss of generality that $x=0$. Consider the function

$$
\phi(x)=\exp \left[-c\left(1-\frac{|x|^{2}}{\delta^{2}}\right)\right]
$$

For some $c=c(\delta)>0$ small enough, $\phi-L \phi \geq 0$ and $\phi=1$ on the boundary. Therefore

$$
|u(0)| \leq \phi(0) \sup _{y:|y|=\delta}|u(y)|
$$

and we can take $\rho(\delta)=\exp [-c(\delta)]$.
Lemma 9.6. If u is a bounded solution of $u-L u=0$ outside some ball $|x| \geq r$ then for some $c>0$ and $C<\infty$,

$$
\sup _{|x|=R}|u(x)| \leq C e^{-c(R-r)} \sup _{|x|=r}|u(x)|
$$

Proof. By the previous two lemmas

$$
\sup _{|x|=r+\delta}|u(x)| \leq \rho(\delta) \sup _{|x|=r}|u(x)|
$$

The lemma is now easily proved by induction.
Suppose L is given and we modify L outside a ball $B\left(x_{0}, 4 \delta\right)$ to get L^{\prime} which has coeffecients $\left\{a_{i, j}^{\prime}(x)\right\}$ that are uniformly close to some constant $c_{i, j}$ and $\left\{b_{j}^{\prime}(x)\right\}$ are 0 in the complement of the ball. For δ small it is easy to see that our basic perturbation argument works for L^{\prime} and

$$
u-L^{\prime} u=f
$$

has a solution in $W_{2, p}$ for $f \in L_{p}$. In particular if $f \geq 0$ is supported inside $B\left(x_{0}, \delta\right), L^{\prime} u=u$ outside the ball and if $u \in W_{2, p}$, it is in some better $L_{p_{1}}$ by Sobolev's lemma. We can iterate this process and obtain eventually an L_{∞} bound of the form

$$
\sup _{\left|x-x_{0}\right|=2 \delta}|u(x)| \leq C\|f\|_{p}
$$

If we now compare the solutions $u-L^{\prime} u=f$ and $v-L v=f$, both of which are nonnegative, since $L=L^{\prime}$ inside $B\left(x_{0}, 4 \delta\right)$, we have

$$
(u-v)-L(u-v)=0
$$

Therefore

$$
\sup _{\left|x-x_{0}\right|=2 \delta}|u(x)-v(x)| \leq \rho(\delta) \sup _{\left|x-x_{0}\right|=4 \delta}|u(x)-v(x)|
$$

From this we conclude that

$$
\sup _{\left|x-x_{0}\right|=2 \delta} v(x) \leq \sup _{\left|x-x_{0}\right|=2 \delta} u(x)+\rho(\delta)\left[\sup _{\left|x-x_{0}\right|=4 \delta} u(x)+\sup _{\left|x-x_{0}\right|=4 \delta} v(x)\right]
$$

But

$$
\sup _{\left|x-x_{0}\right|=4 \delta} v(x) \leq \rho(\delta) \sup _{\left|x-x_{0}\right|=2 \delta} v(x)
$$

and

$$
\sup _{\left|x-x_{0}\right|=4 \delta} u(x) \leq \rho(\delta) \sup _{\left|x-x_{0}\right|=2 \delta} u(x)
$$

We see now that

$$
\sup _{\left|x-x_{0}\right|=2 \delta} v(x) \leq C(\delta) \sup _{\left|x-x_{0}\right|=2 \delta} u(x) \leq C\|f\|_{p}
$$

Now one can estimate $\|v\|_{p} \leq C\|f\|_{p}$.

