9 Elliptic PDE’s

We will apply the results of singular integrals particularly the estimate that
the Riesz transforms are bounded on evry L,(R?) for 1 < p < oo to prove
existence of solutions u € W, ,(R?) for the equation

0u ou
u(z) — izjaz‘,j(l’)m - ; bj(x)a—xj = f()
provided f € L, and the coefficients of

0? 0
3

J
satisfy

1. The coefficients {a; ; ()}, (assumed to satisfy with out loss of generality
the symmetry condition a; ;(z) = a;,(z)), are unfiformly continuous on
R and satisfy

for some 0 < ¢ < C < 0.

2. The coefiicients {b;(x)} are measurable and satisfy

Z b;(z)]> < C < 0 (9.2)

We first derive apriori bounds. We asume that p is arbitrary in the range
1 < p < oo but fixed. Let A, be a bound for the Riesz transforms in L,(R?).
If we look at all constant coefficent operators

32
Lg = Z Qi,jm

with symmetric matrces @) satsfying the bounds (9.1) by a linear transforma-
tion they can be reduced to the operator A and if Au = f and f € L,(R?)
we have the bounds

[tz llp < ALl

o8



and factoring in the constants coming from the linear transformation we can
still conclude that there is a constant A = A(p, ¢, C, d) such that if Lou = f,
then

Huxi,xij < AHpr
Lemma 9.1. If € < ¢ is small enough and sup,cpa |a;;(z) — g ;| < € for

some @Q satisfying (9.1) we can still conclude that for any v € W, that
satisfies

20l axzax]( w) = f(@)

we must necessarily have a bound

Huxi,xij < CHpr

for some C = C(A,d, ¢y) independently of u. Consequently if u is supported
in a ball where |a; j(x) — ¢ ;] < € and

> a5y () = 1)

then again
[ty llp < ClIf

Proof. Let us compute

Lqou = Z Gi,jWij = Z ai j(w)uij( Z[ai’j(x) — Giluig(z)
0] &
== 2 as(usle

I Lqully < |[fll + €od® sup [[ui s,
i,
On the other hand
sup [|ui jll, < Al Lqull, < Al f]l, + Aeod® sup [Jug I,

Z?] Z?]

If € is chosen so that Aeyd® < 3, then
sup [|uiill, < 2A[ £l
ij

For the second part we alter the coeffecients outside the support of u so that
we are back in a situation where we can apply the first part. O
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We now consider a ball of radius 6 < 1 small enough that if x4 is the center
of the ball and x is any point in the ball, then |a; j(x) — a; ;(z0)| < €. This
is possible because of uniform continuity of the coeffecients {a; ;(z)}. Let B;s
be such a ball, and let

Lu = f in Bs
Theorem 9.1. There is a constant C' such that for any p < 1
sup HUUHP By S [Hpr Bs +0° ( )_IHVUHP,Ba + 5_2(1 - p)_QHUHP,Ba]
irj
(9.3)

Proof. Let us for the moment take 6 = 1 and construct a smooth function
¢ = ¢, such that ¢ = 1 on B, and 0 outside B;. We can assume that
Vo] < C(1—p)~tand [VV9¢| < C(1 — p)~2. We take v = u¢ and compute

Q_Zaw ) vij (2 :Zaij( )(du)ij(x)
—asZau )uqj(x +2Zau Ju(z) + u(@) Y aij(@)ey(x)

i3

:gb(m (x) — p(x Zb- x)u;(z +22ai,j(x)¢i(x)uj(x)
Zau )i j(x

We can bound
gl < If(@)] + C(1 = p) | Vull(z) + C(1 = p)*Jul (=)
From the previous lemma we can get

sup [[villp.5, < Allgllp.z < Cllflps + (1= ) I Vullys, + (1= p) 7 |lully,s,]
%)

Since v = u on B, we get

sup || llp.5, < Cllfllps + 1= p) I Vullys, + (1= p)~[lully,s,]
%)

If 6 < 1 we can redefine all functions involved as u(dx), f(dx), a; ;j(0z) and
db;(0zx). With the new operator

0? 0
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we see that
Lsu(6x) = 6*f(6x)

We can now apply our estimate with § = 1 and obtain

sup || jllp.5s, < ClIfllp.ss + 07 (1= p) I Vullps, +07%(1 = p)*[lull,.,]
%)

O

At this point we can do one of two things. If we are interested only in
dealing with all of R? we can raise the estimate (9.3) to the power p and sum
over a fine enough grid so that

0<a< ZlB(waﬁp) < Z 13(%“5) < A < o0

and we will get

sup [|uill, < CllIFllp +07 (1 = p) [ Vully + 071 = p)~?|Jull,)
Z?]

Since § > 0 is fixed (depending on the modulus of continuity of {a; ;(x)})
and we could have fixed p = %, we have the following global estimate for any
u € Wy, satisfyng Lu = f. The constant C' depends only on the ellipticity
bounds in (9.1), the bounds in (9.2) and the modulus of continuty estimates

of {a;;(7)}.
sup [luijll, < CllIfllp + [Vullp + [Jull,] (9.4)
Z’]

Lemma 9.2. For any constant € > 0, there is a constant C. such that for
any u € Way,

IVully < esup [lu;ll, + Ceull, (9.5)

Z?]

Proof. First we note that it is sufficient to prove an estimate of the type

IVullp < Clsup [[uigllp + [|ull] (9.6)

Z?]

We can then replace u(x) by u(Az) and the estimate takes the form

MVully < CA sup [Juigll, + Jull,)

Z7]
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If choosing A = C'e the lemma is seen to be true. To prove (9.6) we basically
need a one dimensional estimate. If we have

[ werasc [ wrave [ g

on R, we could get the estimate on each line and then integrate it. The
inequality itself needs to be proved only for the unit interval [0,1]. We can
then translate and sum. It is quite easy to prove

sup |¢'(z)] < C / ¢ (@) ldz + / l9(2)\da]

0<a<1
O
Our basic apriori estmate becomes
Theorem 9.2. Any function uw € Wy, with Lu = f satisfies
sup [|uill, < ClIIfllp + llullp) (9.7)
Z’]

Proof. Just choose € in (9.5) so that Ce < % where C is the constant in

(9.4). O

We have to work a little harder If we want to prove a local regularity estimate
of the form

Theorem 9.3. Let Q C Q C ' be bounded sets. For any u € Wy, (') with
Lu = f, we have the bounds

luijllpe < CELL) fllp.or + llullpe] (9.8)

Proof. The trick is to go back and change the definition of ¢, so that it
vanishes outside the ball of radius % rather than outside the ball of radius
1. It does not change much since (1 — 22) = (1 — p). We start with the
modified version of (9.3)

sup [[illy.5, < Clllfllp.s, + (1= p) " I Vullps,,, + (1= o) llullp5]
]
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and define

Ty = sup (1—p)? sup i jl1p.5,
%<p<1 b

Iy = sup (1= p)[[Vullps,

%<p<1

Ty = sup Hqu,Bp = Hqu731
%<p<1

We see that
Ty < C[||fllp.5, +T1 + To]

Assume a uniform interpolation inequality for all balls of radius % <p<l1
of the type,

IVully.s, < esup uijllps, + Ce ullps,
irj

for any choice of € > 0, that translates to
YE S;G]E +'(7€_176
and with the right chice of ¢ we get
T < Cllfllp.sy + llullp,5:]

In particular

[ jllp,5, < C(L—=p)7 [ fllp.5: + lullpz]
With rescaling for §; < do < dg,

i jllp.Bs, < C(01,02) [1f lp,5s, + [l2ellp,55,]

Covering ) by a finite number of balls of radius d;, such that the concentric
balls of radius d, are still contained in 2" we get our result. O

Finally we prove the interpolation lemma for balls.

Lemma 9.3. Given u € Wy, p, it can be extended as a function v on R?
supported on By such that

VYl re < ClIVVullps + [[Vullp,s]
IVllp,re < Cl[Vullp,s,

[V]lp,re < Cllullp,z,
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Proof. Basically if we want a function which is smooth inside B; and outside
B; to be globally in W5, the function and its derivatives have to match
on the boundary. The usual reflection with v(1 + r,s) = u(l — r,s) for
small » matches the function and tangential derivatives but not the normal
derivative. v(14r,s) = cqu(l —r, s)+cou(1—2r, s) works for a proper choice
of ¢; and ¢y, We use it to extend to B% and then a radial cutoff to kill it
outside By. For the extended function v we have the interpolation inequality

V0]l pe < € VYUl pa + Ce™ lull,, pa

and this implie for the original u
IVullp,p, < CellVVully,5, + Cel|Vullp,p, + Ce™lully,p,

which is easily turned into

IVullps, < ellVVullyp + Ce™ lullps,
Finally we prove an existence theorem for solutions of u — Lu = f.
Theorem 9.4. The equation

u—Lu=f

has a solution in Wy, for each f € L,.
Proof. We wish to invert (I — L). Suppose we can invert (I — L;). Then
(I=Lo) =[(I~Li) ~ (L= L)' = [I = Ly] [T = (Lo — Li)(I = L) 7]

As long as [[(Ly — Ly1)(I — Ly)7'] < 1 as an operator mapping L, — Ly,
(I — Ly)™" will map L, into W,,. We can perturb the operators from A
to any L nicely in small steps so that ||[L; — La|| < & as operators from
W, — Ly,. All we need are uniform apriori bounds on [[(I — L)~ f][,. O

Theorem 9.5. Any solution v of u — Lu = f with L satisfying (9.1) and
(9.2) also satisfies a bound of the form

lully < ClIf1lp

with a constant that does not depend on L or f.
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The proof depend on lemmas.

Lemma 9.4 (Maximum Principle). Suppose u € Ws,, satisfies u — Lu >
0 in a possibly unbounded region G and p is large enough that Sobolev imbed-
ding applies and u is bounded and continuous on G. If in addition u > 0
on OG then uw > 0 on G. In particular if v and v are two functions wth
u—Lu>v—LvinG and u>v on G, then u > v on G.

Lemma 9.5. Ifu— Lu =0 in a ball B(z,d) of radius 6, then
u(z)] < p(d) sup fu(y)]
yily—z|=5

Proof. We can cssume with out loss of generality that x = 0. Consider the
function

For some ¢ = ¢(d) > 0 small enough, — L¢ > 0 and ¢ = 1 on the boundary.
Therefore

[u(0)] < ¢(0) sup |u(y)]

y:|y|=6

and we can take p(d) = exp[—c(9)]. O

Lemma 9.6. If u is a bounded solution of w — Lu = 0 outside some ball
|z| > r then for some ¢ > 0 and C' < oo,

sup u(z)| < Ce=F=") sup [u(x)|

lz|=R |z|=r

Proof. By the previous two lemmas

sup |u(x)| < p(6) sup [u(z)|

|z|=r+0 |z|=r
The lemma is now easily proved by induction. O

Suppose L is given and we modify L outside a ball B(zg,4d) to get L'
which has coeffecients {a; ;(z)} that are uniformly close to some constant c; ;
and {}(x)} are 0 in the complement of the ball. For ¢ small it is easy to see
that our basic perturbation argument works for L' and

u—Lu=f
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has a solution in Wy, for f € L,. In particular if f > 0 is supported inside
B(z,9), L'u = u outside the ball and if u € W5, it is in some better L,, by
Sobolev’s lemma. We can iterate this process and obtain eventually an L.,
bound of the form

supJu(x)| < O£l

|x—x0]|=20

If we now compare the solutions u — L'u = f and v — Lv = f, both of which
are nonnegative, since L = L’ inside B(x¢,46), we have

(u—v)—Llu—v)=0
Therefore

sup  |u(z) —o(z)] < p(d) sup Ju(z) —v(z)|

|x—x0]|=20 |z—x0|=40

From this we conclude that

sup v(z) < sup u(@)+p(0)] sup wu(x)+ sup v(z)]

|z—x0|=20 |z—x0|=20 |x—x0|=40 |x—x0|=40
But
sup  v(z) < p(6) sup v(x)
|x—xz0|=48 |lx—z0|=26
and

sup u(z) < p(d) sup u(z)

|x—zo|=46 |lx—z0|=26

We see now that

sup - v(x) < C(0) sup ufx) < Cl|fl,

|x—xz0|=26 |z—20|=28

Now one can estimate ||v]|, < C|| f||,-
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