
8 BMO

The space of functions of Bounded Mean Oscillation (BMO) plays an impor-
tant role in Harmonic Analysis.

A function f , in L1(loc) in Rd is said to be a BMO function if

sup
x,r

inf
a

1

|Bx,r|
∫

y∈Bx,r

|f(y) − a|dy = ‖u‖BMO < ∞ (8.1)

where Bx,r is the ball of radius r centered at x, and |Bx,r| is its volume.
Remark. The infimum over a can be replaced by the choice of

a = ā =
1

|Bx,r|
∫

y∈Bx,r

f(y)dy

giving us an equivalent definition. We note that for any a,

|a − ā| ≤ 1

|Bx,r|
∫

y∈Bx,r

|f(y)− a|dy

and therefore if a∗ is the optimal a,

|ā − a∗| ≤ ‖f‖BMO

Remark. Any bounded function is in the class BMO and ‖f‖BMO ≤ ‖f‖∞.

Theorem 8.1 (John-Nirenberg). Let f be a BMO function on a cube Q
of volume |Q| = 1 satisfying

∫
Q

f(x)dx = 0 and ‖f‖BMO ≤ 1. Then there
are finite positive constants c1, c2, independent of f , such that, for any ` > 0

|{x : |f(x)| ≥ `}| ≤ c1 exp[− `

c2
] (8.2)

Proof. Let us define

F (`) = sup
f

|{x : |f(x)| ≥ `}

where the supremum is taken over all functions with ‖f‖BMO ≤ 1 and∫
Q

f(x)dx = 0. Since
∫

Q
f(x)dx = 0 implies that ‖f‖1 ≤ ‖f‖BMO ≤ 1,

F (`) ≤ 1
`
. Let us subdivide the cube into 2d subcubes with sides one half

the original cube. We pick a number a > 1 and keep the cubes Qi with
1

|Qi|
∫

Qi
|f(x)|dx ≥ a. We subdivide again those with 1

|Qi|
∫

Qi
|f(x)|dx < a

and keep going. In this manner we get an atmost countable collection of dis-
joint cubes that we enumerate as {Qj}, that have the following properties:
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1. 1
|Qj|

∫
Qj

|f(x)|dx ≥ a.

2. Each Qj is contained in a bigger cube Q′
j with sides double the size of

the sides of Qj and 1
|Q′

j|
∫

Q′
j
|f(x)|dx < a.

3. By the Lebesgue theorem |f(x)| ≤ a on Q ∩ (∪jQj)
c.

If we denote by aj = 1
|Qj|

∫
Qj

f(x)dx, we have

|aj | ≤ 1

|Qj |
∫

Qj

|f(x)|dx ≤ 2d

|Q′
j |

∫
Q′

j

|f(x)|dx ≤ 2da

by property 2). On the other hand f − aj has mean 0 on Qj and BMO norm
at most 1. Therefore (scaling up the cube to standard size)

|Qj ∩ {x : |f(x)| ≥ 2da + `}| ≤ |Qj ∩ {x : |f(x) − aj | ≥ `}|
≤ |Qj|F (`)

Summing over j, because of property 3),

|{x : |f(x)| ≥ 2da + `}| ≤ F (`)
∑

j

|Qj |

On the other hand property 1) implies that
∑

j |Qj | ≤ 1
a

giving us

F (2da + `) ≤ 1

a
F (`)

which is enough to prove the theorem.

Corollary 8.1. For any p > 1 there is a constant Cd,p depending only on
the dimension d and p such that

sup
Q

1

|Q|
∫

Q

|f(x) − 1

|Q|
∫

Q

f(x)dx|pdx ≤ Cd,p‖f‖p
BMO

The importance of BMO, lies partly in the fact that it is dual to H1.

Theorem 8.2. There are constants 0 < c ≤ C < ∞ such that

c‖f‖BMO ≤ sup
g:‖g‖H1

≤1

|
∫

f(x)g(x)dx| ≤ C‖f‖BMO (8.3)

and every bounded linear functional on H1 is of the above type.
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The proof of the theorem depends on some lemmas.

Lemma 8.1. The Riesz transforms Ri map L∞ → BMO boundedly. In fact
convolution by any kernel of the form K(x) = Ω(x)

|x|d where Ω(x) is homoge-

neous of degree zero, has mean 0 on Sd−1 and satisfies a Hölder condition on
Sd−1 maps L∞ →BMO boundedly.

Proof. Let us suppose that Q is the unit cube centered around the origin and
denote by 2Q the doubled cube. We write f = f1 + f2 where f1 = f12Q and
f2 = f − f1 = f1(2Q)c .

g(x) = g1(x) + g2(x)

where

gi(x) =

∫
Rd

K(x − y)fi(y)dy

∫
Q

|g1(x)|dx ≤ ‖g1‖2 ≤ sup
ξ

|K̂(ξ)|‖f1‖2 ≤ 2
d
2 sup

ξ
|K̂(ξ)|‖f‖∞

On the other hand with aQ =
∫

Q
K(−y)f2(y)dy∫

Q

|g2(x) − aQ|dx

≤
∫

Q

dx

∫
Rd

|K(x − y) − K(−y)|f2(y)dy

≤ ‖f‖∞
∫ ∫

z∈Q
y /∈2Q

|K(x − y) − K(−y)|dxdy

≤ ‖f‖∞ sup
x

∫
|y|≥2|x|

|K(x − y) − K(−y)|dy

≤ B‖f‖∞
The proof for arbitrary cube is just a matter of translation and scaling. The
Hölder continuity is used to prove the boundedness of K̂(ξ).

Lemma 8.2. Any bounded linear function Λ on H1 is given by

Λ(f) =

d∑
i=0

∫
(Rif)(x)gi(x)dx = −

∫
f(x)

d∑
i=0

(Rigi)(x)dx

where R0 = I and Ri for 1 ≤ i ≤ d are the Riesz transforms.
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Proof. The space H1 is a closed subspace of the direct sum ⊕L1(R
d) of d+1

copies of L1(R
d). Hahn-Banach theorem allows us to extend Λ boundedly

to ⊕L1(R
d) and the Riesz representation theorem gives us {gi}. Finally

g0 +
∑d

i=1 Rigi is in BMO.

Lemma 8.3. If g ∈BMO then∫
Rd

|g(y)|
1 + |y|d+1

dy < ∞ (8.4)

and

G(t, x) =

∫
g(y)p(t, x− y)dy

exists where p(· , ·) is the Poisson kernel for the half space t > 0. Moreover
g(t, x) satisfies

sup
x

∫
|y−x|<h
0<t<h

t|∇G(t, y)|2dtdy ≤ A‖g‖2
BMOhd (8.5)

for some constant independent of g. Here ∇G is the full gradient in t and x.

Proof. First let us estimate
∫

Rd

|g(x)|
1+|x|d+1dx. If we denote by Qn the cube of

side 2n around the origin∫
Rd

|g(x)|
1 + |x|d+1

dx ≤
∫

Q0

|g(x)|
1 + |x|d+1

dx +
∑

n

∫
Qn+1∩Qc

n

|g(x)|
1 + |x|d+1

dx

≤
∫

Q0

|g(x)|dx +
∑

n

1

2n(d+1)

∫
Qn+1

|g(x)|dx

≤
∫

Q0

|g(x)|dx +
∑

n

1

2n(d+1)

∫
Qn+1

|g(x) − an+1|dx

+
∑

n

|an+1|
2n

≤
∫

Q0

|g(x)|dx + ‖g‖BMO

∑
n

2(n+1)d

2n(d+1)
+

∑
n

|an+1|
2n
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where

an+1 ≤ 1

2(n+1)d

∫
Qn+1

g(x)dx

Moreover

|a2Q − aQ| =
1

|Q|
∫

Q

|g(x) − a2Q|dx ≤ 2d‖g‖BMO

and this provides a bound of the form

|aQn| ≤ Cn‖g‖BMO +

∫
Q0

|g(x)|dx

establishing (8.4). We now turn to proving (8.5). Again because of the
homogeneity under translations and rescaling, we can assume that x = 0
and h = 1. So we only need to control∫

|y|<1
0<t<1

t|∇G(t, y)|2dtdy ≤ A‖g‖2
BMO

We denote by Q4 the cube |x| ≤ 2 and write g as

g = aQ4 + (g1 − aQ4) + g2

where g1 = g1Q4, g2 = g − g1 = g1Qc
4
. Since constants do not contribute to

(8.5), we can assume that aQ4 = 0, and therefore the integral
∫

Q4
|g(x)|dx can

be estimated in terms of ‖g‖BMO. An easy calculation, writing G = G1 +G2

yields

|∇G2(t, y)| ≤
∫

Qc
4

|g(x)|
1 + |x|d+1

dx ≤ A‖g‖BMO

As for the G1 contribution in terms of the Fourier transform we can control
it by∫ ∞

0

∫
Rd

t|∇G|2dtdy =

∫ ∞

0

∫
Rd

t|ξ|2e−2t|ξ||ĝ1(ξ)|2dξdt =

∫
Rd

|ĝ1(ξ)|2dξ

which is controlled by ‖g‖BMO because of the John-Nirenberg theorem.
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Lemma 8.4. Any function g whose Poisson intgeral G satisfies (8.5) defines
a bounded linear functional on H1.

Proof. The idea of the proof is to write

2

∫ ∞

0

∫
Rd

t∇G(t, x)∇F (t, x)dtdx = 4

∫ ∞

0

∫
Rd

te−2t|ξ||ξ|2f̂(ξ)¯̂g(ξ)dξdt

=

∫
Rd

f̂(ξ)¯̂g(ξ)dξ

=

∫
Rd

f(x)g(x)dx

and concentrate on ∫ ∞

0

∫
Rd

t|∇xG(t, x)||∇xF (t, x)|dtdx

We need the auxiliary function

(Shu)(x) = [

∫ ∫
|x−y|<t<h

t1−d|∇u|2dydt]
1
2

Clearly (Shu)(x) is increasing in h and we show in the next lemma that

‖S∞F‖1 ≤ C‖f‖H1

Let us assume it and complete the proof. Define

h(x) = sup{h : (ShF )(x) ≤ MC}
then

(Sh(x)F )(x) ≤ MC

In addition it follows from (8.5) that

sup
y,h

∫
|y−x|≤h

|(ShF )(x)|2dx ≤ Chd

Now h(x) < h means (ShF )(x) > MC and therefore

|{x : |x − y| < h, h(x) < h}| ≤ Chd

M2
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By the proper choice of M , we can be sure that

|{x : |x − y| < h, h(x) ≥ h}| ≥ chd

Now we complete the proof.∫ ∞

0

∫
Rd

t|∇xG(t, x)||∇xF (t, x)|dtdx

≤ C

∫ ∞

0

∫
Rd

∫
|y−x|<t≤h(y)

t1−d|∇xG(t, x)||∇xF (t, x)|dtdxdy

≤
∫

Rd

dy(

∫ ∞

0

∫
|y−x|<t≤h(y)

t1−d|∇xG(t, x)|2dxdt)
1
2

× (

∫ ∞

0

∫
|y−x|<t≤h(y)

t1−d|∇xF (t, x)|2dxdt)
1
2

≤ M

∫
Rd

(S∞F )(y)dy ≤ M‖f‖H1

Lemma 8.5. If f ∈ H1 then |(S∞F )(x)|1 ≤ C‖f‖H1.

Proof. This is done in two steps.

Step 1. We control the nontangential maximal function

U∗(x) = sup
y,t:|x−y|≤kt

|U(t, y)|

by

‖U∗‖1 ≤ Ck‖u‖H1

If U0(x) ∈ H1 then U0 and its n Riesz transforms U1, . . . , Un can be rec-
ognized as the full gradient of a Harmonic function W on Rn+1

+ . Then
V = (U2

0 + · · · + U2
n)

p
2 can be verified to be subharmonic provided p > n−1

n−2
.

This depends on the calculation

∆V =
p

2

p − 2

2
V

p
2
−2‖∇V ‖2 +

p

2
V

p
2
−1∆V

= pV
p
2
−2

[
(p − 2)‖

∑
Uj∇Uj‖2 + V

∑
j

‖∇Uj‖2

]

≥ 0
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provided either p ≥ 2, or if 0 < p < 2,

‖Hξ‖2 ≤ 1

2 − p
Tr (H∗H)‖ξ‖2 (8.6)

where H is the Hessian of W with trace 0 and ξ = (U0, . . . , Un). Then if
{λj} are the n + 1 eigenvalues of H , and λ0 is the one with largest modulus,
the remaining ones have an average of −λ0

n
and therefore

Tr (H∗H) =
∑

λ2
j ≥ (1 +

1

n
)λ2

0

This means that for equation (8.6) to hold we only need n
n+1

≤ 1
2−p

or p ≥
n−1
n+1

. In any case there is a choice of p = pn < 1 that is allowed.
Now consider the subharmonic function V . If we denote by h(t, x) the

Poisson integral of the boundary values of h(0, x) = V (0, x),

V (t, x) ≤ h(t, x)

and we have

U∗(x) = sup
(y,t):‖x−y‖≤kt

U(t, y) ≤ sup
(y,t):‖x−y‖≤kt

V [(t, y)]
1
p ≤ sup

(y,t):‖x−y‖≤kt

h[(t, y)]
1
p

By maximal inequality, valid because 1
p

> 1,

‖U∗‖1 ≤ ‖h∗‖p
1
p

≤ Ck,p‖h(0, x)‖p
1
p

= Ck,p‖V (0, x)‖p
1
p

≤ Ck‖U‖H1

Step 2. It is now left to control ‖(S∞U)(x)‖1 ≤ C‖U∗‖1. We use the room
between the regions |x − y| ≤ t in the defintion of S and the larger regions
|x− y| ≤ kt used in the definition of U∗ to control S through U . Let us pick
k = 4. Let α > 0 be a number. Consider the set E = {x : |U∗(x)| ≤ α and
B = Ec = {x : |U∗(x)| > α}. We denote by G the union G = ∪x∈E{(t, y) :
|x − y| ≤ t}. We want to estimate∫

E

|S∞U |2(x)dx =

∫ ∫ ∫
x∈E

|x−y|≤t

t1−d|∇U |2(t, y)dxdtdy

≤ C

∫
G

t|∇U |2(t, y)dtdy

≤ C

∫
G

t(∆U2)(t, y)dtdy

≤ C

∫
∂G

[|t∂U2

∂n
(t, y)| + |U2(t, y)

∂t

∂n
(t, y)|]dσ
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by Greens’s theorem. We have cheated a bit. We have assumed some smooth-
ness on ∂G. We have assumed decay at ∞ so there are no contributions
from ∞. We can assume that we have initially U(0, x) ∈ L2 so the decay
is valid. We can approximate G from inside by regions Gε with smooth
boundary. The boundary consists of two parts. B1 = {t = 0, x ∈ E}
and B2 = {x ∈ Ec, t = φ(x)}. Moreover |∇φ| ≤ 1. We will show below
that t|∇U(t, y)| ≤ Cα in G. On B1 one can show that t|U ||∇U | → 0 and
U2 ∂t

∂n
→ U2. Moreover dσ ' dx. The contribution from B1 is therefore

bounded by
∫

E
|U(0, x)|2dx ≤ ∫

E
|U∗(0, x)|2dx. On the other hand on B2

since it is still true that dσ = dx, using the bound t|∇U | ≤ Cα, | ∂t
∂n
| ≤ 1, we

see that the contribution is bounded by Cα2|Ec|. Putting the pieces together
we get ∫

E

|S∞U |2(x)dx ≤ Cα2TU∗(α) + C

∫
E

|U∗|2(x)dx

≤ Cα2TU∗(α) + C

∫ α

0

zTU∗(z)dz

where TU∗(z) = mes{x : |U∗(x)| > z}. Finally since mes(Ec) = TU∗(α)

mes{x : |S∞U(x)| > α} ≤ CTU∗(α) +
C

α2

∫ α

0

zTU∗(z)dz

Integrating with respect to α we obtain

‖S∞U‖1 ≤ C‖U∗‖1

Step 3. To get the bound t|∇U | ≤ Cα in G, we note that any (t, x) ∈ G has
a ball around it of radius t contained in the set ∪x∈E{y : |x− y| ≤ 4t} where
|U | ≤ α and by standard estimates, if a Harmonic function is bounded by α
in a ball of radius t then its gradient at the center is bounded by Cα

t
.

57


