8 BMO

The space of functions of Bounded Mean Oscillation (BMO) plays an important role in Harmonic Analysis.

A function f, in $L_{1}(l o c)$ in R^{d} is said to be a BMO function if

$$
\begin{equation*}
\sup _{x, r} \inf _{a} \frac{1}{\left|B_{x, r}\right|} \int_{y \in B_{x, r}}|f(y)-a| d y=\|u\|_{B M O}<\infty \tag{8.1}
\end{equation*}
$$

where $B_{x, r}$ is the ball of radius r centered at x, and $\left|B_{x, r}\right|$ is its volume. Remark. The infimum over a can be replaced by the choice of

$$
a=\bar{a}=\frac{1}{\left|B_{x, r}\right|} \int_{y \in B_{x, r}} f(y) d y
$$

giving us an equivalent definition. We note that for any a,

$$
|a-\bar{a}| \leq \frac{1}{\left|B_{x, r}\right|} \int_{y \in B_{x, r}}|f(y)-a| d y
$$

and therefore if a^{*} is the optimal a,

$$
\left|\bar{a}-a^{*}\right| \leq\|f\|_{B M O}
$$

Remark. Any bounded function is in the class BMO and $\|f\|_{B M O} \leq\|f\|_{\infty}$.
Theorem 8.1 (John-Nirenberg). Let f be a BMO function on a cube Q of volume $|Q|=1$ satisfying $\int_{Q} f(x) d x=0$ and $\|f\|_{B M O} \leq 1$. Then there are finite positive constants c_{1}, c_{2}, independent of f, such that, for any $\ell>0$

$$
\begin{equation*}
|\{x:|f(x)| \geq \ell\}| \leq c_{1} \exp \left[-\frac{\ell}{c_{2}}\right] \tag{8.2}
\end{equation*}
$$

Proof. Let us define

$$
F(\ell)=\sup _{f} \mid\{x:|f(x)| \geq \ell\}
$$

where the supremum is taken over all functions with $\|f\|_{B M O} \leq 1$ and $\int_{Q} f(x) d x=0$. Since $\int_{Q} f(x) d x=0$ implies that $\|f\|_{1} \leq\|f\|_{B M O} \leq 1$, $F(\ell) \leq \frac{1}{\ell}$. Let us subdivide the cube into 2^{d} subcubes with sides one half the original cube. We pick a number $a>1$ and keep the cubes Q_{i} with $\frac{1}{\left|Q_{i}\right|} \int_{Q_{i}}|f(x)| d x \geq a$. We subdivide again those with $\frac{1}{\left|Q_{i}\right|} \int_{Q_{i}}|f(x)| d x<a$ and keep going. In this manner we get an atmost countable collection of disjoint cubes that we enumerate as $\left\{Q_{j}\right\}$, that have the following properties:

1. $\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}}|f(x)| d x \geq a$.
2. Each Q_{j} is contained in a bigger cube Q_{j}^{\prime} with sides double the size of the sides of Q_{j} and $\frac{1}{\left|Q_{j}^{\prime}\right|} \int_{Q_{j}^{\prime}}|f(x)| d x<a$.
3. By the Lebesgue theorem $|f(x)| \leq a$ on $Q \cap\left(\cup_{j} Q_{j}\right)^{c}$.

If we denote by $a_{j}=\frac{1}{\left|Q_{j}\right|} \int_{Q_{j}} f(x) d x$, we have

$$
\left|a_{j}\right| \leq \frac{1}{\left|Q_{j}\right|} \int_{Q_{j}}|f(x)| d x \leq \frac{2^{d}}{\left|Q_{j}^{\prime}\right|} \int_{Q_{j}^{\prime}}|f(x)| d x \leq 2^{d} a
$$

by property 2). On the other hand $f-a_{j}$ has mean 0 on Q_{j} and BMO norm at most 1. Therefore (scaling up the cube to standard size)

$$
\begin{aligned}
\left|Q_{j} \cap\left\{x:|f(x)| \geq 2^{d} a+\ell\right\}\right| & \leq\left|Q_{j} \cap\left\{x:\left|f(x)-a_{j}\right| \geq \ell\right\}\right| \\
& \leq\left|Q_{j}\right| F(\ell)
\end{aligned}
$$

Summing over j, because of property 3),

$$
\left|\left\{x:|f(x)| \geq 2^{d} a+\ell\right\}\right| \leq F(\ell) \sum_{j}\left|Q_{j}\right|
$$

On the other hand property 1) implies that $\sum_{j}\left|Q_{j}\right| \leq \frac{1}{a}$ giving us

$$
F\left(2^{d} a+\ell\right) \leq \frac{1}{a} F(\ell)
$$

which is enough to prove the theorem.
Corollary 8.1. For any $p>1$ there is a constant $C_{d, p}$ depending only on the dimension d and p such that

$$
\sup _{Q} \frac{1}{|Q|} \int_{Q}\left|f(x)-\frac{1}{|Q|} \int_{Q} f(x) d x\right|^{p} d x \leq C_{d, p}\|f\|_{B M O}^{p}
$$

The importance of BMO, lies partly in the fact that it is dual to \mathcal{H}_{1}.
Theorem 8.2. There are constants $0<c \leq C<\infty$ such that

$$
\begin{equation*}
c\|f\|_{B M O} \leq \sup _{g:\|g\|_{\mathcal{H}_{1}} \leq 1}\left|\int f(x) g(x) d x\right| \leq C\|f\|_{B M O} \tag{8.3}
\end{equation*}
$$

and every bounded linear functional on \mathcal{H}_{1} is of the above type.

The proof of the theorem depends on some lemmas.
Lemma 8.1. The Riesz transforms $R_{i} \operatorname{map} L_{\infty} \rightarrow$ BMO boundedly. In fact convolution by any kernel of the form $K(x)=\frac{\Omega(x)}{|x|^{d}}$ where $\Omega(x)$ is homogeneous of degree zero, has mean 0 on S^{d-1} and satisfies a Hölder condition on S^{d-1} maps $L_{\infty} \rightarrow B M O$ boundedly.
Proof. Let us suppose that Q is the unit cube centered around the origin and denote by $2 Q$ the doubled cube. We write $f=f_{1}+f_{2}$ where $f_{1}=f \mathbf{1}_{2 Q}$ and $f_{2}=f-f_{1}=f \mathbf{1}_{(2 Q)^{c}}$.

$$
g(x)=g_{1}(x)+g_{2}(x)
$$

where

$$
\begin{gathered}
g_{i}(x)=\int_{R^{d}} K(x-y) f_{i}(y) d y \\
\int_{Q}\left|g_{1}(x)\right| d x \leq\left\|g_{1}\right\|_{2} \leq \sup _{\xi}|\widehat{K}(\xi)|\left\|f_{1}\right\|_{2} \leq 2^{\frac{d}{2}} \sup _{\xi}|\widehat{K}(\xi)|\|f\|_{\infty}
\end{gathered}
$$

On the other hand with $a_{Q}=\int_{Q} K(-y) f_{2}(y) d y$

$$
\begin{aligned}
\int_{Q} \mid g_{2}(x) & -a_{Q} \mid d x \\
& \leq \int_{Q} d x \int_{R^{d}}|K(x-y)-K(-y)| f_{2}(y) d y \\
& \leq\|f\|_{\infty} \iint_{\substack{z \in Q \\
y \notin 2 Q}}|K(x-y)-K(-y)| d x d y \\
& \leq\|f\|_{\infty} \sup _{x} \int_{|y| \geq 2|x|}|K(x-y)-K(-y)| d y \\
& \leq B\|f\|_{\infty}
\end{aligned}
$$

The proof for arbitrary cube is just a matter of translation and scaling. The Hölder continuity is used to prove the boundedness of $\widehat{K}(\xi)$.

Lemma 8.2. Any bounded linear function Λ on \mathcal{H}_{1} is given by

$$
\Lambda(f)=\sum_{i=0}^{d} \int\left(R_{i} f\right)(x) g_{i}(x) d x=-\int f(x) \sum_{i=0}^{d}\left(R_{i} g_{i}\right)(x) d x
$$

where $R_{0}=\mathcal{I}$ and R_{i} for $1 \leq i \leq d$ are the Riesz transforms.

Proof. The space \mathcal{H}_{1} is a closed subspace of the direct sum $\oplus L_{1}\left(R^{d}\right)$ of $d+1$ copies of $L_{1}\left(R^{d}\right)$. Hahn-Banach theorem allows us to extend Λ boundedly to $\oplus L_{1}\left(R^{d}\right)$ and the Riesz representation theorem gives us $\left\{g_{i}\right\}$. Finally $g_{0}+\sum_{i=1}^{d} R_{i} g_{i}$ is in BMO.

Lemma 8.3. If $g \in B M O$ then

$$
\begin{equation*}
\int_{R^{d}} \frac{|g(y)|}{1+|y|^{d+1}} d y<\infty \tag{8.4}
\end{equation*}
$$

and

$$
G(t, x)=\int g(y) p(t, x-y) d y
$$

exists where $p(\cdot, \cdot)$ is the Poisson kernel for the half space $t>0$. Moreover $g(t, x)$ satisfies

$$
\begin{equation*}
\sup _{x} \int_{\substack{|y-x|<h \\ 0<t<h}} t|\nabla G(t, y)|^{2} d t d y \leq A\|g\|_{B M O}^{2} h^{d} \tag{8.5}
\end{equation*}
$$

for some constant independent of g. Here ∇G is the full gradient in t and x.
Proof. First let us estimate $\int_{R^{d}} \frac{|g(x)|}{1+|x|^{d+1}} d x$. If we denote by Q_{n} the cube of side 2^{n} around the origin

$$
\begin{aligned}
& \int_{R^{d}} \frac{|g(x)|}{1+|x|^{d+1}} d x \leq \int_{Q_{0}} \frac{|g(x)|}{1+|x|^{d+1}} d x+\sum_{n} \int_{Q_{n+1} \cap Q_{n}^{c}} \frac{|g(x)|}{1+|x|^{d+1}} d x \\
& \leq \int_{Q_{0}}|g(x)| d x+\sum_{n} \frac{1}{2^{n(d+1)}} \int_{Q_{n+1}}|g(x)| d x \\
& \leq \int_{Q_{0}}|g(x)| d x+\sum_{n} \frac{1}{2^{n(d+1)}} \int_{Q_{n+1}}\left|g(x)-a_{n+1}\right| d x \\
& \quad+\sum_{n} \frac{\left|a_{n+1}\right|}{2^{n}} \\
& \leq \int_{Q_{0}}|g(x)| d x+\|g\|_{B M O} \sum_{n} \frac{2^{(n+1) d}}{2^{n(d+1)}}+\sum_{n} \frac{\left|a_{n+1}\right|}{2^{n}}
\end{aligned}
$$

where

$$
a_{n+1} \leq \frac{1}{2^{(n+1) d}} \int_{Q_{n+1}} g(x) d x
$$

Moreover

$$
\left|a_{2 Q}-a_{Q}\right|=\frac{1}{|Q|} \int_{Q}\left|g(x)-a_{2 Q}\right| d x \leq 2^{d}\|g\|_{B M O}
$$

and this provides a bound of the form

$$
\left|a_{Q_{n}}\right| \leq C n\|g\|_{B M O}+\int_{Q_{0}}|g(x)| d x
$$

establishing (8.4). We now turn to proving (8.5). Again because of the homogeneity under translations and rescaling, we can assume that $x=0$ and $h=1$. So we only need to control

$$
\int_{\substack{|y|<1 \\ 0<t<1}} t|\nabla G(t, y)|^{2} d t d y \leq A\|g\|_{B M O}^{2}
$$

We denote by Q_{4} the cube $|x| \leq 2$ and write g as

$$
g=a_{Q_{4}}+\left(g_{1}-a_{Q_{4}}\right)+g_{2}
$$

where $g_{1}=g \mathbf{1}_{Q_{4}}, g_{2}=g-g_{1}=g \mathbf{1}_{Q_{4}^{c}}$. Since constants do not contribute to (8.5), we can assume that $a_{Q_{4}}=0$, and therefore the integral $\int_{Q_{4}}|g(x)| d x$ can be estimated in terms of $\|g\|_{B M O}$. An easy calculation, writing $G=G_{1}+G_{2}$ yields

$$
\left|\nabla G_{2}(t, y)\right| \leq \int_{Q_{4}^{c}} \frac{|g(x)|}{1+|x|^{d+1}} d x \leq A\|g\|_{B M O}
$$

As for the G_{1} contribution in terms of the Fourier transform we can control it by

$$
\int_{0}^{\infty} \int_{R^{d}} t|\nabla G|^{2} d t d y=\int_{0}^{\infty} \int_{R^{d}} t|\xi|^{2} e^{-2 t|\xi|}\left|\widehat{g}_{1}(\xi)\right|^{2} d \xi d t=\int_{R^{d}}\left|\widehat{g}_{1}(\xi)\right|^{2} d \xi
$$

which is controlled by $\|g\|_{\text {BMO }}$ because of the John-Nirenberg theorem.

Lemma 8.4. Any function g whose Poisson intgeral G satisfies (8.5) defines a bounded linear functional on \mathcal{H}_{1}.

Proof. The idea of the proof is to write

$$
\begin{aligned}
2 \int_{0}^{\infty} \int_{R^{d}} t \nabla G(t, x) \nabla F(t, x) d t d x & =4 \int_{0}^{\infty} \int_{R^{d}} t e^{-2 t|\xi|}|\xi|^{2} \widehat{f}(\xi) \overline{\hat{g}}(\xi) d \xi d t \\
& =\int_{R^{d}} \widehat{f}(\xi) \overline{\widehat{g}}(\xi) d \xi \\
& =\int_{R^{d}} f(x) g(x) d x
\end{aligned}
$$

and concentrate on

$$
\int_{0}^{\infty} \int_{R^{d}} t\left|\nabla_{x} G(t, x)\right|\left|\nabla_{x} F(t, x)\right| d t d x
$$

We need the auxiliary function

$$
\left(S_{h} u\right)(x)=\left[\iint_{|x-y|<t<h} t^{1-d}|\nabla u|^{2} d y d t\right]^{\frac{1}{2}}
$$

Clearly $\left(S_{h} u\right)(x)$ is increasing in h and we show in the next lemma that

$$
\left\|S_{\infty} F\right\|_{1} \leq C\|f\|_{\mathcal{H}_{1}}
$$

Let us assume it and complete the proof. Define

$$
h(x)=\sup \left\{h:\left(S_{h} F\right)(x) \leq M C\right\}
$$

then

$$
\left(S_{h(x)} F\right)(x) \leq M C
$$

In addition it follows from (8.5) that

$$
\sup _{y, h} \int_{|y-x| \leq h}\left|\left(S_{h} F\right)(x)\right|^{2} d x \leq C h^{d}
$$

Now $h(x)<h$ means $\left(S_{h} F\right)(x)>M C$ and therefore

$$
|\{x:|x-y|<h, h(x)<h\}| \leq \frac{C h^{d}}{M^{2}}
$$

By the proper choice of M, we can be sure that

$$
|\{x:|x-y|<h, h(x) \geq h\}| \geq c h^{d}
$$

Now we complete the proof.

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{R^{d}} t\left|\nabla_{x} G(t, x)\right|\left|\nabla_{x} F(t, x)\right| d t d x \\
& \leq \\
& \leq C \int_{0}^{\infty} \int_{R^{d}} \int_{|y-x|<t \leq h(y)} t^{1-d}\left|\nabla_{x} G(t, x)\right|\left|\nabla_{x} F(t, x)\right| d t d x d y \\
& \leq \\
& \quad \int_{R^{d}} d y\left(\int_{0}^{\infty} \int_{|y-x|<t \leq h(y)} t^{1-d}\left|\nabla_{x} G(t, x)\right|^{2} d x d t\right)^{\frac{1}{2}} \\
& \quad \times\left(\int_{0}^{\infty} \int_{|y-x|<t \leq h(y)} t^{1-d}\left|\nabla_{x} F(t, x)\right|^{2} d x d t\right)^{\frac{1}{2}} \\
& \leq M \int_{R^{d}}\left(S_{\infty} F\right)(y) d y \leq M\|f\|_{\mathcal{H}_{1}}
\end{aligned}
$$

Lemma 8.5. If $f \in \mathcal{H}_{1}$ then $\left|\left(S_{\infty} F\right)(x)\right|_{1} \leq C\|f\|_{\mathcal{H}_{1}}$.
Proof. This is done in two steps.
Step 1. We control the nontangential maximal function

$$
U^{*}(x)=\sup _{y, t:|x-y| \leq k t}|U(t, y)|
$$

by

$$
\left\|U^{*}\right\|_{1} \leq C_{k}\|u\|_{\mathcal{H}_{1}}
$$

If $U_{0}(x) \in \mathcal{H}_{1}$ then U_{0} and its n Riesz transforms U_{1}, \ldots, U_{n} can be recognized as the full gradient of a Harmonic function W on R_{+}^{n+1}. Then $V=\left(U_{0}^{2}+\cdots+U_{n}^{2}\right)^{\frac{p}{2}}$ can be verified to be subharmonic provided $p>\frac{n-1}{n-2}$. This depends on the calculation

$$
\begin{aligned}
\Delta V & =\frac{p}{2} \frac{p-2}{2} V^{\frac{p}{2}-2}\|\nabla V\|^{2}+\frac{p}{2} V^{\frac{p}{2}-1} \Delta V \\
& =p V^{\frac{p}{2}-2}\left[(p-2)\left\|\sum U_{j} \nabla U_{j}\right\|^{2}+V \sum_{j}\left\|\nabla U_{j}\right\|^{2}\right] \\
& \geq 0
\end{aligned}
$$

provided either $p \geq 2$, or if $0<p<2$,

$$
\begin{equation*}
\|H \xi\|^{2} \leq \frac{1}{2-p} \operatorname{Tr}\left(H^{*} H\right)\|\xi\|^{2} \tag{8.6}
\end{equation*}
$$

where H is the Hessian of W with trace 0 and $\xi=\left(U_{0}, \ldots, U_{n}\right)$. Then if $\left\{\lambda_{j}\right\}$ are the $n+1$ eigenvalues of H, and λ_{0} is the one with largest modulus, the remaining ones have an average of $-\frac{\lambda_{0}}{n}$ and therefore

$$
\operatorname{Tr}\left(H^{*} H\right)=\sum \lambda_{j}^{2} \geq\left(1+\frac{1}{n}\right) \lambda_{0}^{2}
$$

This means that for equation (8.6) to hold we only need $\frac{n}{n+1} \leq \frac{1}{2-p}$ or $p \geq$ $\frac{n-1}{n+1}$. In any case there is a choice of $p=p_{n}<1$ that is allowed.

Now consider the subharmonic function V. If we denote by $h(t, x)$ the Poisson integral of the boundary values of $h(0, x)=V(0, x)$,

$$
V(t, x) \leq h(t, x)
$$

and we have

$$
U^{*}(x)=\sup _{(y, t):\|x-y\| \leq k t} U(t, y) \leq \sup _{(y, t):\|x-y\| \leq k t} V[(t, y)]^{\frac{1}{p}} \leq \sup _{(y, t):\|x-y\| \leq k t} h[(t, y)]^{\frac{1}{p}}
$$

By maximal inequality, valid because $\frac{1}{p}>1$,

$$
\left\|U^{*}\right\|_{1} \leq\left\|h^{*}\right\|_{\frac{1}{p}}^{p} \leq C_{k, p}\|h(0, x)\|_{\frac{1}{p}}^{p}=C_{k, p}\|V(0, x)\|_{\frac{1}{p}}^{p} \leq C_{k}\|U\|_{\mathcal{H}_{1}}
$$

Step 2. It is now left to control $\left\|\left(S_{\infty} U\right)(x)\right\|_{1} \leq C\left\|U^{*}\right\|_{1}$. We use the room between the regions $|x-y| \leq t$ in the defintion of S and the larger regions $|x-y| \leq k t$ used in the definition of U^{*} to control S through U. Let us pick $k=4$. Let $\alpha>0$ be a number. Consider the set $E=\left\{x:\left|U^{*}(x)\right| \leq \alpha\right.$ and $B=E^{c}=\left\{x:\left|U^{*}(x)\right|>\alpha\right\}$. We denote by G the union $G=\cup_{x \in E}\{(t, y):$ $|x-y| \leq t\}$. We want to estimate

$$
\begin{aligned}
\int_{E}\left|S_{\infty} U\right|^{2}(x) d x & =\iiint_{\substack{x \in E \\
|x-y| \leq t}} t^{1-d}|\nabla U|^{2}(t, y) d x d t d y \\
& \leq C \int_{G} t|\nabla U|^{2}(t, y) d t d y \\
& \leq C \int_{G} t\left(\Delta U^{2}\right)(t, y) d t d y \\
& \leq C \int_{\partial G}\left[\left|t \frac{\partial U^{2}}{\partial n}(t, y)\right|+\left|U^{2}(t, y) \frac{\partial t}{\partial n}(t, y)\right|\right] d \sigma
\end{aligned}
$$

by Greens's theorem. We have cheated a bit. We have assumed some smoothness on ∂G. We have assumed decay at ∞ so there are no contributions from ∞. We can assume that we have initially $U(0, x) \in L_{2}$ so the decay is valid. We can approximate G from inside by regions G_{ϵ} with smooth boundary. The boundary consists of two parts. $B_{1}=\{t=0, x \in E\}$ and $B_{2}=\left\{x \in E^{c}, t=\phi(x)\right\}$. Moreover $|\nabla \phi| \leq 1$. We will show below that $t|\nabla U(t, y)| \leq C \alpha$ in G. On B_{1} one can show that $t|U||\nabla U| \rightarrow 0$ and $U^{2} \frac{\partial t}{\partial n} \rightarrow U^{2}$. Moreover $d \sigma \simeq d x$. The contribution from B_{1} is therefore bounded by $\int_{E}|U(0, x)|^{2} d x \leq \int_{E}\left|U^{*}(0, x)\right|^{2} d x$. On the other hand on B_{2} since it is still true that $d \sigma=d x$, using the bound $t|\nabla U| \leq C \alpha,\left|\frac{\partial t}{\partial n}\right| \leq 1$, we see that the contribution is bounded by $C \alpha^{2}\left|E^{c}\right|$. Putting the pieces together we get

$$
\begin{aligned}
\int_{E}\left|S_{\infty} U\right|^{2}(x) d x & \leq C \alpha^{2} T_{U^{*}}(\alpha)+C \int_{E}\left|U^{*}\right|^{2}(x) d x \\
& \leq C \alpha^{2} T_{U^{*}}(\alpha)+C \int_{0}^{\alpha} z T_{U^{*}}(z) d z
\end{aligned}
$$

where $T_{U^{*}}(z)=\operatorname{mes}\left\{x:\left|U^{*}(x)\right|>z\right\}$. Finally since $\operatorname{mes}\left(E^{c}\right)=T_{U^{*}}(\alpha)$

$$
\operatorname{mes}\left\{x:\left|S_{\infty} U(x)\right|>\alpha\right\} \leq C T_{U^{*}}(\alpha)+\frac{C}{\alpha^{2}} \int_{0}^{\alpha} z T_{U^{*}}(z) d z
$$

Integrating with respect to α we obtain

$$
\left\|S_{\infty} U\right\|_{1} \leq C\left\|U^{*}\right\|_{1}
$$

Step 3. To get the bound $t|\nabla U| \leq C \alpha$ in G, we note that any $(t, x) \in G$ has a ball around it of radius t contained in the set $\cup_{x \in E}\{y:|x-y| \leq 4 t\}$ where $|U| \leq \alpha$ and by standard estimates, if a Harmonic function is bounded by α in a ball of radius t then its gradient at the center is bounded by $\frac{C \alpha}{t}$.

