4 Riesz Kernels.

A natural generalization of the Hilbert transform to higher dimension is mutiplication of the Fourier Transform by homogeneous functions of degree 0 , the simplest ones being

$$
\begin{equation*}
\widehat{R_{i} f}(\xi)=\frac{\xi_{i}}{|\xi|} \hat{f}(\xi) \tag{4.1}
\end{equation*}
$$

Since the functions $k_{i}(\xi)=\frac{\xi_{i}}{|\xi|}$ are bounded functions it is clear that R_{i} are bounded operators from $L_{2}\left(R^{d}\right)$ into $L_{2}\left(R^{d}\right)$. On the other hand k_{i} are not continuous at $\xi=0$, and therefore the formal kernel K_{i} with the representation

$$
\begin{equation*}
R_{i} f(x)=\int_{R^{d}} K_{i}(x-y) f(y) d y \tag{4.2}
\end{equation*}
$$

can not be in $L_{1}\left(R^{d}\right)$.
Lemma 1. The kernels $K_{i}(\cdot)$ are given by

$$
\begin{equation*}
K_{i}(x)=c_{d} \frac{x_{i}}{|x|^{d+1}} \tag{4.3}
\end{equation*}
$$

where c_{d} is a constant depending on the dimension.
Proof. We will begin with the following calculation. For any $\epsilon>0, d>\delta>0$

$$
\begin{align*}
\int_{R^{d}} e^{i<x, \xi>} \frac{1}{|x|^{d-\delta}} e^{-\epsilon|x|^{2}} d x & =\frac{1}{\Gamma\left(\frac{d-\delta}{2}\right)} \int_{R^{d}} \int_{0}^{\infty} e^{i<x, \xi>} t^{\frac{d-\delta}{2}-1} e^{-(t+\epsilon)|x|^{2}} d x d t \\
& =\frac{c_{d}}{\Gamma\left(\frac{d-\delta}{2}\right)} \int_{0}^{\infty} e^{-\frac{|\xi|^{2}}{4(t+\epsilon)} t^{\frac{d-\delta}{2}-1}(t+\epsilon)^{-\frac{d}{2}} d t} \tag{4.4}
\end{align*}
$$

If we let $\epsilon \rightarrow 0$ in equation (??)

$$
\lim _{\epsilon \rightarrow 0} \int_{R^{d}} e^{i<x, \xi>} \frac{1}{|x|^{d-\delta}} e^{-\epsilon|x|^{2}} d x=\frac{c_{d}}{\Gamma\left(\frac{d-\delta}{2}\right)} \int_{0}^{\infty} e^{-\frac{|\xi|^{2}}{4 t}} t^{-\frac{\delta}{2}-1} d t=\frac{c_{d} \Gamma\left(\frac{\delta}{2}\right)}{\Gamma\left(\frac{d-\delta}{2}\right)}|\xi|^{-\delta}
$$

If we let $f_{\epsilon, \delta}(x)=\frac{(d-\delta) x_{j}}{|x|^{d+2-\delta}} e^{-\epsilon|x|^{2}}, \lim _{\epsilon \rightarrow 0} \widehat{f}_{\epsilon, \delta}(x)=i c_{d} \frac{\Gamma\left(\frac{\delta}{2}\right)}{\Gamma\left(\frac{d-\delta}{2}\right)} \xi_{j}|\xi|^{-\delta}$. Finally we let $\delta>1 \rightarrow 1$.

It is not difficult to see that for any smooth function $f(x)$ with compact support

$$
\left(R_{j} f\right)(x)=\int_{|y| \leq \ell} \frac{y_{j}}{|y|^{d+1}}[f(x+y)-f(x)] d y+\int_{|y| \geq \ell} \frac{y_{j}}{|y|^{d+1}} f(x+y) d y
$$

is independent of ℓ because $\int_{S} \frac{y_{j}}{|y|^{d+1}} d y=0$ for any shell $S=\left\{\ell_{1} \leq|y| \leq \ell_{2}\right\}$. It is a smooth function of x. For large x, the first term is 0 , and the second integral can be estimated by,

$$
\int_{R^{d}}\left|\left[\frac{x_{j}-y_{j}}{|y-x|^{d+1}}-\frac{x_{j}}{|x|^{d+1}}\right] f(y)\right| d y \leq \frac{C}{|x|^{d+1}}
$$

if we use that f has compact support and satisfies $\int_{R^{d}} f(y) d y=0$. It is now easy to compute

$$
\widehat{R_{j} f}(\xi)=\frac{1}{c_{d}} \frac{\xi_{j}}{|\xi|} \hat{f}(\xi)
$$

The next step is to show that the kernels K_{i} satisfy condition of equation (??). Let us take $x, y \in R^{d}$ and write $y=r \omega$ where $r=|y|$ and $\omega=\frac{y}{|y|} \in S^{d-1}$.

$$
\begin{aligned}
\int_{|x-y| \geq C|y|}\left|\frac{x_{i}-y_{i}}{|x-y|^{d+1}}-\frac{x_{i}}{|x|^{d+1}}\right| d x= & \int_{|x-y| \geq C|y|}\left|\frac{\sigma(x-y)}{|x-y|^{d}}-\frac{\sigma(x)}{|x|^{d}}\right| d x \\
\leq & \int_{|x-r \omega| \geq C r \mid}\left|\frac{\sigma(x-r \omega)}{|x-r \omega|^{d}}-\frac{\sigma(x-r \omega)}{|x|^{d}}\right| d x \\
& +\int_{|x-r \omega| \geq C r} \frac{|\sigma(x-r \omega)-\sigma(x)|}{|x|^{d}} d x \\
\leq & C_{1} \int_{|x-r \omega| \geq C r}\left|\frac{1}{|x-r \omega|^{d}}-\frac{1}{|x|^{d}}\right| d x \\
& +\int_{|x-r \omega| \geq C r} \frac{|\sigma(x-r \omega)-\sigma(x)|}{|x|^{d}} d x
\end{aligned}
$$

where $\sigma(x)=\frac{x_{i}}{|x|}$. If we make the substitution $x=r x^{\prime}$ we get

$$
\begin{aligned}
\int_{|x-y| \geq C|y|}\left|\frac{x_{i}-y_{i}}{|x-y|^{d+1}}-\frac{x_{i}}{|x|^{d+1}}\right| d x \leq & \left.C_{1} \int_{\left|x^{\prime}-\omega\right| \geq C} \frac{1}{\left|x^{\prime}-\omega\right|^{d}}-\frac{1}{\left|x^{\prime}\right|^{d}} \right\rvert\, d x^{\prime} \\
& +\int_{\left|x^{\prime}-\omega\right| \geq C} \frac{\left|\sigma\left(x^{\prime}-\omega\right)-\sigma\left(x^{\prime}\right)\right|}{\left|x^{\prime}\right|^{d}} d x^{\prime}
\end{aligned}
$$

The estimate is clearly uniform in r. If C is large enough 0 and ω are excluded from the domain of integrartion. For large x we get an extra cancellation in both the integrals to make them converge with a bound that is uniform in ω. For the second integral we need only that σ satisfies a Hölder condition on S^{d-1}.

We have therefore proved the following theorem.
Theorem 4.1. If the kernel $K(x)$ is given by

$$
\begin{equation*}
K(x)=\frac{\sigma\left(\frac{x}{|x|}\right)}{|x|^{d}} \tag{4.5}
\end{equation*}
$$

and $\sigma(\cdot)$ satisfies a Hölder condition on S^{d-1} and has mean 0 on S^{d-1}, then convolution by K defines a bounded operator from $L_{p}\left(R^{d}\right)$ into $L_{p}\left(R^{d}\right)$ for all p in the range $1<p<\infty$. In particular the Riesz transforms 4.1 given by 4.2 with kernels 4.3 are bounded operators in every L_{p} in the same range.

5 Sobolev Spaces.

In dealing with differential equations we often come across solutions that do not have the smoothness necessary to be a solution in the ordinary sense. To illustrate it by an example, suppose we want to solve the equation

$$
\begin{equation*}
\Delta u=\sum_{i} u_{x_{i} x_{i}}=f \tag{5.1}
\end{equation*}
$$

on R^{d}. If $d=1$ the equation reduces to $u_{x x}=f$ which is easy to solve. We need only to integrate f twice, and if f has d continuous derivatives u will have $d+2$ continuous derivatives. On R^{d} it is conceivable that each $u_{x_{i} x_{i}}$ may be singular, but somehow the singularities cancel miraculously to produce a much nicer f. Working formally with Fourier trnasforms

$$
-|\xi|^{2} \widehat{u}(\xi)=\widehat{f}(\xi)
$$

and

$$
\widehat{u}_{x_{i} x_{j}}(\xi)=-\frac{\xi_{i} \xi_{j} \widehat{f}(\xi), ~}{|\xi|^{2}}
$$

In other words

$$
u_{x_{i} x_{j}}=-R_{i} R_{j} f
$$

It says that for $1<p<\infty$, if $f \in L_{p}$ we can expect u to have two derivatives in L_{p}, but if f is bounded and continuous one should not expect u to have two continuous derivatives. In fact on $d=2$, one can construct a counter example, i.e. a function f which is continuous such that the soulution u of Poisson's equation exhibits a singularity of the individual second derivatives at 0 , that of course cancel to produce a continuous f.

The Sobolev spaces $W_{k}^{p}\left(R^{d}\right)$ are defined as the space of functions u on R^{d} such that u and all its partial derivatives $D_{x_{1}}^{n_{1}} \cdots D_{x_{d}}^{n_{d} u \text { of order } n=}$ $n_{1}+\cdots+n_{d}$ are in L_{p}. We could start with C^{∞} functions with compact support on R^{d} and complete it in the norm

$$
\begin{equation*}
\|u\|_{k, p}=\sum_{\substack{n_{1}, \ldots n_{d} \\ n=n_{1}+\cdots+n_{d} \leq k}}\left\|D_{x_{1}}^{n_{1}} \cdots D_{x_{d}}^{n_{d}} u\right\|_{p} \tag{5.2}
\end{equation*}
$$

If $u \in L_{p}$ and $D_{i} u=D_{x_{i}} u \in L_{p} u$ should be more regular than an L_{p} function.

Let us consider the operator

$$
\widehat{A u}(\xi)=\frac{1}{\left(1+|\xi|^{2}\right)^{\frac{1}{2}}} \widehat{u}(\xi)
$$

and consider its represenation by the kernel

$$
(A u)(x)=\int_{R^{d}} u(x+y) a(y) d y
$$

where

$$
\begin{aligned}
a(x) & =c_{d} \int_{R_{d}} \frac{e^{-i<x, \xi>}}{\left(1+|\xi|^{2}\right)^{\frac{1}{2}}} d x=\frac{c_{d}}{\sqrt{\pi}} \int_{R^{d}} \int_{0}^{\infty} e^{-i<x, \xi>} e^{-t\left(1+|\xi|^{2}\right)} \frac{1}{\sqrt{t}} d t \\
& =k_{d} \int_{0}^{\infty} \frac{e^{-t}}{t^{\frac{d+1}{2}}} e^{-\frac{|x|^{2}}{4 t}} d t=\frac{k_{d}}{|y|^{d-1}} \int_{0}^{\infty} e^{-t|x|^{2}} e^{-\frac{1}{4 t}} \frac{d t}{t^{\frac{d+1}{2}}}
\end{aligned}
$$

decays very rapidly at ∞, is smooth for $x \neq 0$ and has a singularity of $|x|^{1-d}$ near the origin for $d \geq 2$ and a logarithmic singularity at 0 when $d=1$. In particular $a(\cdot) \in L_{q}$ for $q<\frac{d}{d-1}$. By Hölder's inequality, A will map L_{p} into L_{∞} for $p>d$. If $d=p>1$ the result is false. Let us take $d=2$ and a nonnegative function f with compact support such that $f \in L_{2}$ but $\int_{R^{d}} \frac{f(x)}{|x|} d x=\infty$. We saw that $A f$ has a singularity at 0 . Let us consider $u=D_{1}(A f)$. Clearly

$$
\|u\|_{2}^{2}=\|\hat{u}\|_{2}^{2}=\int_{R^{2}} \frac{\xi_{1}^{2}}{1+|\xi|^{2}}|\hat{f}(\xi)|^{2} d \xi \leq\|\hat{f}\|_{2}^{2}=\|f\|_{2}^{2}
$$

By Young's inequality any $K \in L_{q}$ maps $L_{p} \rightarrow L_{p^{\prime}}$ provided $\frac{1}{p}-\frac{1}{p^{\prime}}=1-\frac{1}{q}$. Therefore $f \in W_{1, p}$ implies $f \in L_{p^{\prime}}$ so long as $\frac{1}{p}-\frac{1}{p^{\prime}}<\frac{1}{d}$. By induction $f \in W_{k, p}$ implies that $f \in W_{1, p}$ implies $f \in L_{p^{\prime}}$ so long as $\frac{1}{p}-\frac{1}{p^{\prime}}<\frac{k}{d}$). Therefore on $R^{d}, f \in W_{k, p}$ implies the continuity of f if $k>\frac{d}{p}$.

Actually one can prove a stronger result to the effect that if $\frac{1}{p}-\frac{1}{p^{\prime}}=\frac{1}{d}$. then $W_{1, p} \subset L_{p^{\prime}}$ as long as $1<p^{\prime}<\infty$. This requires the following theorem.

Theorem 5.1. Let T_{a} be the operator of convolution by the kernel $|x|^{a-d}$ on R^{d}.

$$
\begin{equation*}
\left(T_{a} f\right)(x)=\int_{R^{d}}|y|^{a-d} f(x+y) d y \tag{5.3}
\end{equation*}
$$

Then T_{a} is bounded from L_{p} to $L_{p^{\prime}}$ provided $1<p<\frac{d}{a}$ and $\frac{1}{p^{\prime}}=\frac{1}{p}-\frac{a}{d}$.
Proof. First, we note that for $a>0, T_{a}$ is well defined on bounded functions with compact support. We start by proving a weak type inequlity of the form

$$
\mu\left[x:\left|\left(T_{a} f\right)(x)\right| \geq \ell\right] \leq C \frac{\|f\|_{p}^{q}}{\ell^{q}}
$$

For any choice of $1<p<\frac{d}{a}$ let $f \in L_{p}$. We can assume without loss of generality that $f \geq 0$. We write

$$
\begin{aligned}
\left(T_{a} f\right)(x) & =\int_{|y| \leq \rho}|y|^{a-d} f(x+y) d y+\int_{|y| \geq \rho}|y|^{a-d} f(x+y) d y \\
& \leq u_{1}+u_{2}
\end{aligned}
$$

and estimate u_{1}, u_{2} by

$$
\begin{aligned}
\left\|u_{1}\right\|_{p} & \leq C_{1} \rho^{a}\|f\|_{p} \\
\left\|u_{2}\right\|_{\infty} & \leq\left(\int_{|y| \geq \rho}|y|^{p^{*}(a-d)} d y\right)^{\frac{1}{p^{*}}}\|f\|_{p}=C_{2} \rho^{a-d+\frac{d}{p^{*}}}\|f\|_{p}
\end{aligned}
$$

We can now pick $\rho=\left(\frac{2 C_{2}\|f\|_{p}}{\ell}\right)^{\frac{p}{d-a p}}$ and estimate

$$
\begin{aligned}
\sup _{x} u_{2}(x) & \leq \frac{\ell}{2} \\
\mu\left[x: u_{1}(x) \geq \frac{\ell}{2}\right] & \leq 2^{p} C_{1}^{p} \rho^{a p} \frac{\|f\|_{p}^{p}}{\ell^{p}} \\
& =C_{3}\left(\frac{\|f\|_{p}}{\ell}\right)^{\frac{a p^{2}}{d-a_{p}}+p} \\
& =C_{3}\left(\frac{\|f\|_{p}}{\ell}\right)^{q}
\end{aligned}
$$

where $q=\frac{p d}{d-a p}$ or $\frac{1}{q}=\frac{1}{p}-\frac{a}{d}$.
Now, an application of Marcinkiewicz interpolation gives boundedness from L_{p} to L_{q} in the same range and with the same relation between p and q.

We can also define the fractional derivative operarors

$$
\begin{equation*}
\left(|D|^{a} f\right)(x)=\int_{R^{d}} \frac{f(x+y)-f(x)}{|y|^{d+a}} d y \tag{5.4}
\end{equation*}
$$

for $0<a<2$. A calculation shows that in terms of Foirier transforms it is multiplication by

$$
\int_{R^{d}} \frac{e^{i<\xi, y>}-1}{|y|^{d+a}} d y=c_{d, a}|\xi|^{a}
$$

Therefore $|D|^{a}$ and T_{a} are essentially (upto a constant) inverses of each other. If $r>0$ is written as $k+a$, where k is a nonnegative integer and $0 \leq a<1$, then one defines the norm corresponding to $r^{\text {th }}$ derivative by

$$
\begin{equation*}
\|u\|_{r, p}=\sum_{\sum_{i} n_{i} \leq k}\left\|D_{1}^{n_{1}} \cdots D_{d}^{n_{d}} u\right\|_{p}+\sum_{\sum_{i} n_{i}=k}\left\|D_{1}^{n_{1}} \cdots D_{d}^{n_{d}} u\right\|_{a, p} \tag{5.5}
\end{equation*}
$$

This way the Sobolev spaces $W_{r, p}$ are defined for fractional derivatives as well.

Theorem 5.2. The inclusion map is well defined and bounded from $W_{r, p}$ into $W_{s, q}$ provided $s<r, 1<p<q<\infty$, and $\frac{1}{q} \geq \frac{1}{p}-\frac{r-s}{d}$. The extreme value of $q=\infty$ is allowed if $\frac{1}{q}>\frac{1}{p}-\frac{r-s}{d}$.
Proof. We can assume without loss of generality that $0<r-s<1$. We can go from $W_{r, p}$ to $W_{s, q}$ in a finite number of steps, with $0<r-s<1$ at each step. We write $\mathcal{I}=c_{d, a} T_{a}|D|^{a}$ where $a=r-s$. By definition $|D|^{a}$ maps $W_{r, p}$ boundedly into $W_{s, p}$. By the earlier theorem T_{a} maps $W_{s, p}$ boundedly into $W_{s, q}$. Although we proved it for $s=0$, it is true for every s because T_{a} commutes with $|D|^{a}$. The cae $q=\infty$ is covered as well by this argument.

6 Generalized Functions.

Let us begin with the space $W_{1,2}$. This is a Hilbert Space with the inner product

$$
<f, g>_{1}=\int_{R^{d}}\left[f \bar{g}+\sum_{1}^{d} f_{x_{i}} \bar{g}_{x_{i}}\right] d x=\int_{R^{d}} f \bar{h} d x
$$

where $h=g-\sum_{1}^{d} g_{x_{i} x_{i}}$. Since $g \in W_{1,2}, g_{x_{i}} \in L_{2}$ and $g_{x_{i} x_{i}}$ is the derivative of an L_{2} function. In fact since we can write $\int f g_{x_{i}} d x$ as $-\int f_{x_{i}} g d x$, Any derivative of an L_{2} function can be thought of as a bounded linear functional on the space $W_{1,2}$. A simlar reasoning applies to all the spaces $W_{r, p}$. The dual space of $W_{r, p}$ is $W_{-r, q}$ where $\frac{1}{p}+\frac{1}{q}=1$.

For a function to be in L_{p} its singularities as well as decay at ∞ must be controlled. We can get rid of the condition at ∞ by demaniding that f be in $L_{p}(K)$ for every bounded set K or equivalently by insisting that $\phi f \in L_{p}$ for every C^{∞} function ϕ with compact support. This definition makes sense for $W_{r, p}$ as well. We say that $f \in W_{r, p}^{l o c}$ if $\phi f \in W_{r, p}$ for every C^{∞} function ϕ with compact support. One needs to check that on $W_{r, p}$ mutiplication by a smooth function is a bounded linear map. One can use Leibnitz's rule if r is an integer. For $0<r<1$ we need the following lemma.
Lemma 2. If $f \in W_{r, p}$ and $\phi \in C^{r^{\prime}}$ with $r<r^{\prime} \leq 1$ i.e. ϕ is a bounded function satisfying $|\phi(x)-\phi(y)| \leq C|x-y|^{r^{\prime}}$, for all x, y, then $\phi f \in W_{r, p}$.
Proof. We need to prove

$$
g(x)=\int_{R^{d}} \frac{\phi(y) f(y)-\phi(x) f(x)}{|y-x|^{d+r}} d y
$$

is in L_{p}. We can write

$$
\phi(y) f(y)-\phi(x) f(x)=\phi(x)[f(y)-f(x)]+[\phi(y)-\phi(x)] f(y) .
$$

The contribution of first term is easy to control. To control the second term it is sufficient to show that

$$
\sup _{x} \int_{R^{d}} \frac{|\phi(y)-\phi(x)|}{|y-x|^{d+r}} d y<\infty
$$

which is not hard. We split the integral into two regions $|x-y| \leq 1$ and $|x-y|>1$, use the Hölder property of ϕ to obtain an estimate on the integral over $|x-y| \leq 1$ and the boundedness of ϕ to get an estimate over $|x-y|>1$, both of which are uniform in x.

