
4 Riesz Kernels.

A natural generalization of the Hilbert transform to higher dimension is
mutiplication of the Fourier Transform by homogeneous functions of degree
0, the simplest ones being

R̂if(ξ) =
ξi

|ξ| f̂(ξ) (4.1)

Since the functions ki(ξ) = ξi

|ξ| are bounded functions it is clear that Ri

are bounded operators from L2(R
d) into L2(R

d). On the other hand ki

are not continuous at ξ = 0, and therefore the formal kernel Ki with the
representation

Rif(x) =

∫
Rd

Ki(x − y)f(y)dy (4.2)

can not be in L1(R
d).

Lemma 1. The kernels Ki(·) are given by

Ki(x) = cd
xi

|x|d+1
(4.3)

where cd is a constant depending on the dimension.

Proof. We will begin with the following calculation. For any ε > 0, d > δ > 0∫
Rd

ei<x,ξ> 1

|x|d−δ
e−ε|x|2dx =

1

Γ(d−δ
2

)

∫
Rd

∫ ∞

0

ei<x,ξ>t
d−δ
2

−1e−(t+ε)|x|2dxdt

=
cd

Γ(d−δ
2

)

∫ ∞

0

e−
|ξ|2

4(t+ε) t
d−δ
2

−1(t + ε)−
d
2 dt (4.4)

If we let ε → 0 in equation (??)

lim
ε→0

∫
Rd

ei<x,ξ> 1

|x|d−δ
e−ε|x|2dx =

cd

Γ(d−δ
2

)

∫ ∞

0

e−
|ξ|2
4t t−

δ
2
−1dt =

cdΓ( δ
2
)

Γ(d−δ
2

)
|ξ|−δ
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If we let fε,δ(x) =
(d−δ)xj

|x|d+2−δ e
−ε|x|2, limε→0 f̂ε,δ(x) = icd

Γ( δ
2
)

Γ(d−δ
2

)
ξj|ξ|−δ. Finally we

let δ > 1 → 1.
It is not difficult to see that for any smooth function f(x) with compact

support

(Rjf)(x) =

∫
|y|≤`

yj

|y|d+1
[f(x + y) − f(x)]dy +

∫
|y|≥`

yj

|y|d+1
f(x + y)dy

is independent of ` because
∫

S

yj

|y|d+1 dy = 0 for any shell S = {`1 ≤ |y| ≤ `2}.
It is a smooth function of x. For large x, the first term is 0, and the second
integral can be estimated by,∫

Rd

∣∣[ xj − yj

|y − x|d+1
− xj

|x|d+1

]
f(y)

∣∣dy ≤ C

|x|d+1

if we use that f has compact support and satisfies
∫

Rd f(y)dy = 0. It is now
easy to compute

R̂jf(ξ) =
1

cd

ξj

|ξ| f̂(ξ)

The next step is to show that the kernels Ki satisfy condition of equation (??).
Let us take x, y ∈ Rd and write y = rω where r = |y| and ω = y

|y| ∈ Sd−1.

∫
|x−y|≥C|y|

| xi − yi

|x − y|d+1
− xi

|x|d+1
|dx =

∫
|x−y|≥C|y|

|σ(x − y)

|x − y|d − σ(x)

|x|d |dx

≤
∫
|x−rω|≥Cr|

|σ(x − rω)

|x − rω|d − σ(x − rω)

|x|d |dx

+

∫
|x−rω|≥Cr

|σ(x − rω) − σ(x)|
|x|d dx

≤ C1

∫
|x−rω|≥Cr

| 1

|x − rω|d − 1

|x|d |dx

+

∫
|x−rω|≥Cr

|σ(x − rω) − σ(x)|
|x|d dx
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where σ(x) = xi

|x| . If we make the substitution x = rx′ we get∫
|x−y|≥C|y|

| xi − yi

|x − y|d+1
− xi

|x|d+1
|dx ≤ C1

∫
|x′−ω|≥C

| 1

|x′ − ω|d − 1

|x′|d |dx′

+

∫
|x′−ω|≥C

|σ(x′ − ω) − σ(x′)|
|x′|d dx′

The estimate is clearly uniform in r. If C is large enough 0 and ω are excluded
from the domain of integrartion. For large x we get an extra cancellation in
both the integrals to make them converge with a bound that is uniform in
ω. For the second integral we need only that σ satisfies a Hölder condition
on Sd−1.

We have therefore proved the following theorem.

Theorem 4.1. If the kernel K(x) is given by

K(x) =
σ( x

|x|)

|x|d (4.5)

and σ(·) satisfies a Hölder condition on Sd−1 and has mean 0 on Sd−1, then
convolution by K defines a bounded operator from Lp(R

d) into Lp(R
d) for all

p in the range 1 < p < ∞. In particular the Riesz transforms 4.1 given by
4.2 with kernels 4.3 are bounded operators in every Lp in the same range.

5 Sobolev Spaces.

In dealing with differential equations we often come across solutions that do
not have the smoothness necessary to be a solution in the ordinary sense. To
illustrate it by an example, suppose we want to solve the equation

∆u =
∑

i

uxixi
= f (5.1)

on Rd. If d = 1 the equation reduces to uxx = f which is easy to solve. We
need only to integrate f twice, and if f has d continuous derivatives u will
have d+2 continuous derivatives. On Rd it is conceivable that each uxixi

may
be singular, but somehow the singularities cancel miraculously to produce a
much nicer f . Working formally with Fourier trnasforms

−|ξ|2û(ξ) = f̂(ξ)
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and

ûxixj
(ξ) = −ξiξj

|ξ|2 f̂(ξ)

In other words

uxixj
= −RiRjf

It says that for 1 < p < ∞, if f ∈ Lp we can expect u to have two derivatives
in Lp, but if f is bounded and continuous one should not expect u to have
two continuous derivatives. In fact on d = 2, one can construct a counter
example, i.e. a function f which is continuous such that the soulution u of
Poisson’s equation exhibits a singularity of the individual second derivatives
at 0, that of course cancel to produce a continuous f .

The Sobolev spaces W p
k (Rd) are defined as the space of functions u on

Rd such that u and all its partial derivatives Dn1
x1

· · ·Dnd
xd

u of order n =
n1 + · · · + nd are in Lp. We could start with C∞ functions with compact
support on Rd and complete it in the norm

‖u‖k,p =
∑

n1,...nd
n=n1+···+nd≤k

‖Dn1
x1

· · ·Dnd
xd

u‖p (5.2)

If u ∈ Lp and Diu = Dxi
u ∈ Lp u should be more regular than an Lp function.

Let us consider the operator

Âu(ξ) =
1

(1 + |ξ|2) 1
2

û(ξ)

and consider its represenation by the kernel

(Au)(x) =

∫
Rd

u(x + y)a(y)dy

where

a(x) = cd

∫
Rd

e−i<x,ξ>

(1 + |ξ|2) 1
2

dx =
cd√
π

∫
Rd

∫ ∞

0

e−i<x,ξ>e−t(1+|ξ|2) 1√
t
dt

= kd

∫ ∞

0

e−t

t
d+1
2

e−
|x|2
4t dt =

kd

|y|d−1

∫ ∞

0

e−t |x|2e−
1
4t

dt

t
d+1
2
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decays very rapidly at ∞, is smooth for x 6= 0 and has a singularity of |x|1−d

near the origin for d ≥ 2 and a logarithmic singularity at 0 when d = 1.
In particular a(·) ∈ Lq for q < d

d−1
. By Hölder’s inequality, A will map Lp

into L∞ for p > d. If d = p > 1 the result is false. Let us take d = 2
and a nonnegative function f with compact support such that f ∈ L2 but∫

Rd

f(x)
|x| dx = ∞. We saw that Af has a singularity at 0. Let us consider

u = D1(Af). Clearly

‖u‖2
2 = ‖û‖2

2 =

∫
R2

ξ2
1

1 + |ξ|2 |f̂(ξ)|2dξ ≤ ‖f̂‖2
2 = ‖f‖2

2

By Young’s inequality any K ∈ Lq maps Lp → Lp′ provided 1
p
− 1

p′ = 1 − 1
q
.

Therefore f ∈ W1,p implies f ∈ Lp′ so long as 1
p
− 1

p′ < 1
d
. By induction

f ∈ Wk,p implies that f ∈ W1,p implies f ∈ Lp′ so long as 1
p
− 1

p′ < k
d
).

Therefore on Rd, f ∈ Wk,p implies the continuity of f if k > d
p
.

Actually one can prove a stronger result to the effect that if 1
p
− 1

p′ = 1
d
.

then W1,p ⊂ Lp′ as long as 1 < p′ < ∞. This requires the following theorem.

Theorem 5.1. Let Ta be the operator of convolution by the kernel |x|a−d on
Rd.

(Taf)(x) =

∫
Rd

|y|a−df(x + y)dy (5.3)

Then Ta is bounded from Lp to Lp′ provided 1 < p < d
a

and 1
p′ = 1

p
− a

d
.

Proof. First, we note that for a > 0, Ta is well defined on bounded functions
with compact support. We start by proving a weak type inequlity of the
form

µ[x : |(Taf)(x)| ≥ `] ≤ C
‖f‖q

p

`q

For any choice of 1 < p < d
a

let f ∈ Lp. We can assume without loss of
generality that f ≥ 0. We write

(Taf)(x) =

∫
|y|≤ρ

|y|a−df(x + y)dy +

∫
|y|≥ρ

|y|a−df(x + y)dy

≤ u1 + u2
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and estimate u1, u2 by

‖u1‖p ≤ C1ρ
a‖f‖p

‖u2‖∞ ≤
( ∫

|y|≥ρ

|y|p∗(a−d)dy

) 1
p∗
‖f‖p = C2ρ

a−d+ d
p∗ ‖f‖p

We can now pick ρ = (2C2‖f‖p

`
)

p
d−ap and estimate

sup
x

u2(x) ≤ `

2

µ[x : u1(x) ≥ `

2
] ≤ 2pCp

1ρ
a p
‖f‖p

p

` p

= C3

(‖f‖p

`

) ap2

d−ap
+p

= C3

(‖f‖p

`

)q

where q = pd
d−ap

or 1
q

= 1
p
− a

d
.

Now, an application of Marcinkiewicz interpolation gives boundedness from
Lp to Lq in the same range and with the same relation between p and q.

We can also define the fractional derivative operarors

(|D|af)(x) =

∫
Rd

f(x + y) − f(x)

|y|d+a
dy (5.4)

for 0 < a < 2. A calculation shows that in terms of Foirier transforms it is
multiplication by ∫

Rd

ei<ξ , y> − 1

|y|d+a
dy = cd,a|ξ|a

Therefore |D|a and Ta are essentially (upto a constant) inverses of each other.
If r > 0 is written as k + a, where k is a nonnegative integer and 0 ≤ a < 1,
then one defines the norm corresponding to rth derivative by

‖u‖r,p =
∑
P

i ni≤k

‖Dn1
1 · · ·Dnd

d u‖p +
∑
P

i ni=k

‖Dn1
1 · · ·Dnd

d u‖a,p (5.5)

This way the Sobolev spaces Wr,p are defined for fractional derivatives as
well.
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Theorem 5.2. The inclusion map is well defined and bounded from Wr,p

into Ws,q provided s < r, 1 < p < q < ∞, and 1
q
≥ 1

p
− r−s

d
. The extreme

value of q = ∞ is allowed if 1
q

> 1
p
− r−s

d
.

Proof. We can assume without loss of generality that 0 < r− s < 1. We can
go from Wr,p to Ws,q in a finite number of steps, with 0 < r − s < 1 at each
step. We write I = cd,aTa|D|a where a = r − s. By definition |D|a maps
Wr,p boundedly into Ws,p. By the earlier theorem Ta maps Ws,p boundedly
into Ws,q. Although we proved it for s = 0, it is true for every s because Ta

commutes with |D|a. The cae q = ∞ is covered as well by this argument.

6 Generalized Functions.

Let us begin with the space W1,2. This is a Hilbert Space with the inner
product

< f, g >1=

∫
Rd

[f ḡ +
d∑
1

fxi
ḡxi

]dx =

∫
Rd

fh̄dx

where h = g − ∑d
1 gxixi

. Since g ∈ W1,2 , gxi
∈ L2 and gxixi

is the derivative
of an L2 function. In fact since we can write

∫
fgxi

dx as − ∫
fxi

gdx, Any
derivative of an L2 function can be thought of as a bounded linear functional
on the space W1,2. A simlar reasoning applies to all the spaces Wr,p . The
dual space of Wr,p is W−r,q where 1

p
+ 1

q
= 1.

For a function to be in Lp its singularities as well as decay at ∞ must be
controlled. We can get rid of the condition at ∞ by demaniding that f be
in Lp(K) for every bounded set K or equivalently by insisting that φf ∈ Lp

for every C∞ function φ with compact support. This definition makes sense
for Wr,p as well. We say that f ∈ W loc

r,p if φf ∈ Wr,p for every C∞ function φ
with compact support. One needs to check that on Wr,p mutiplication by a
smooth function is a bounded linear map. One can use Leibnitz’s rule if r is
an integer. For 0 < r < 1 we need the following lemma.

Lemma 2. If f ∈ Wr,p and φ ∈ Cr′ with r < r′ ≤ 1 i.e. φ is a bounded
function satisfying |φ(x) − φ(y)| ≤ C|x − y|r′, for all x, y, then φf ∈ Wr,p.

Proof. We need to prove

g(x) =

∫
Rd

φ(y)f(y)− φ(x)f(x)

|y − x|d+r
dy
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is in Lp. We can write

φ(y)f(y)− φ(x)f(x) = φ(x)[f(y) − f(x)] + [φ(y) − φ(x)]f(y).

The contribution of first term is easy to control. To control the second term
it is sufficient to show that

sup
x

∫
Rd

|φ(y)− φ(x)|
|y − x|d+r

dy < ∞

which is not hard. We split the integral into two regions |x − y| ≤ 1 and
|x−y| > 1, use the Hölder property of φ to obtain an estimate on the integral
over |x−y| ≤ 1 and the boundedness of φ to get an estimate over |x−y| > 1,
both of which are uniform in x.
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