4 Riesz Kernels.

A natural generalization of the Hilbert transform to higher dimension is
mutiplication of the Fourier Transform by homogeneous functions of degree
0, the simplest ones being
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Since the functions k;(§) = % are bounded functions it is clear that R;

are bounded operators from Lo(R?) into Ly(R?). On the other hand k;
are not continuous at £ = 0, and therefore the formal kernel K; with the
representation

(€) (4.1)

Rif(z) = | Ki(z—y)f(y)dy (4.2)

Rd
can not be in L;(R?).

Lemma 1. The kernels K;(-) are given by

X

Kz(l') = Cd|x|—d+1

(4.3)

where cq is a constant depending on the dimension.

Proof. We will begin with the following calculation. For any ¢ > 0,d > ¢ > 0
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If we let € — 0 in equation (?7?)
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If we let f.s(z) = S;ﬂﬁse*e‘xe, lim,_,o f;g(x) = iCdeg)§j|£|ié‘ Finally we
let 6> 1 — 1. i

It is not difficult to see that for any smooth function f(z) with compact
support

= Ji x — f(x Yi x
<Rﬁxw-3/ i@ty ﬂ>wy+/“ b )y

ly|<¢ ly|>¢

is independent of £ because [ ‘yfﬁdy = 0 for any shell S = {f; < |y| < l}.
It is a smooth function of z. For large x, the first term is 0, and the second
integral can be estimated by,
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if we use that f has compact support and satisfies [ ra f(y)dy = 0. It is now
easy to compute
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The next step is to show that the kernels K; satisfy condition of equation (?7).

Let us take x,y € R and write y = rw where r = |y| and w = ﬁ € S,
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where o(x) = i If we make the substitution z = rz’ we get
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The estimate is clearly uniform in r. If C'is large enough 0 and w are excluded
from the domain of integrartion. For large x we get an extra cancellation in
both the integrals to make them converge with a bound that is uniform in
w. For the second integral we need only that o satisfies a Holder condition
on S,

We have therefore proved the following theorem.

Theorem 4.1. If the kernel K(x) is given by

(4.5)

and o(-) satisfies a Hélder condition on S~' and has mean 0 on S, then
convolution by K defines a bounded operator from L,(R®) into L,(R%) for all
p in the range 1 < p < co. In particular the Riesz transforms 4.1 given by
4.2 with kernels 4.3 are bounded operators in every L, in the same range.

5 Sobolev Spaces.

In dealing with differential equations we often come across solutions that do
not have the smoothness necessary to be a solution in the ordinary sense. To
illustrate it by an example, suppose we want to solve the equation

Ay = Zumm =f (5.1)

on R If d = 1 the equation reduces to u,, = f which is easy to solve. We
need only to integrate f twice, and if f has d continuous derivatives u will
have d+2 continuous derivatives. On R? it is conceivable that each u,,, may
be singular, but somehow the singularities cancel miraculously to produce a
much nicer f. Working formally with Fourier trnasforms
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and
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Ui, (§) = f(€)

In other words
u:via:j - _RzR]f

It says that for 1 < p < oo, if f € L, we can expect u to have two derivatives
in L,, but if f is bounded and continuous one should not expect v to have
two continuous derivatives. In fact on d = 2, one can construct a counter
example, i.e. a function f which is continuous such that the soulution u of
Poisson’s equation exhibits a singularity of the individual second derivatives
at 0, that of course cancel to produce a continuous f.

The Sobolev spaces WF(R?) are defined as the space of functions u on
R% such that u and all its partial derivatives D2? - -Dydu of order n =
ny + -+ 4+ ng are in L,. We could start with ¢ functions with compact
support on R? and complete it in the norm

lulip=" > D& Diul, (5.2)
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Ifu e L, and Dyu = D,,u € L, ushould be more regular than an L, function.

Let us consider the operator
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and consider its represenation by the kernel

(4u)(a) = [ e+ )alu)dy
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decays very rapidly at oo, is smooth for x # 0 and has a singularity of ||~
near the origin for d > 2 and a logarithmic singularity at 0 when d = 1.
In particular a(-) € L, for ¢ < d ;. By Holder’s inequality, A will map L,
into Lo, for p > d. If d = p > 1 the result is false. Let us take d = 2
and a nonnegative function f with compact support such that f € Ly but
f R f|($) dxr = oco. We saw that Af has a singularity at 0. Let us consider

u= Dy(Af). Clearly
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By Young’s inequality any K € L, maps L, — L, provided }D - i =1- é.
Therefore f € W;, implies f € L, so long as 113 — 1% < é. By induction
f € Wy, implies that f € W, implies f € L, so long as % —}% < 2)

Therefore on RY, f € W}, implies the continuity of f if k > Ql

Actually one can prove a stronger result to the effect that if L 5= 1% =

1
d:
then Wy, C L,y aslong as 1 < p’ < co. This requires the following theorem.

Theorem 5.1. Let T, be the operator of convolution by the kernel |z]|¢¢

R?.

on

T = [ s+ )y (53

Then T, is bounded from L, to L, provided 1 < p < g and i = % -4
Proof. First, we note that for a > 0, T, is well defined on bounded functions
with compact support. We start by proving a weak type inequlity of the
form

e (T > 0 < o1

For any choice of 1 < p < g let f € L,. We can assume without loss of
generality that f > 0. We write

(Tuf)(x) = /| 8y / W (z + y)dy

ly|>p
< up + Uz



and estimate wuq, us by
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We can now pick p = d-ar and estimate
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Now, an application of Marcinkiewicz interpolation gives boundedness from
L, to L, in the same range and with the same relation between p and g.
We can also define the fractional derivative operarors

(DI £)(z f$§@a”@ (5.4)
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where g =

for 0 < a < 2. A calculation shows that in terms of Foirier transforms it is

multiplication by
ez’<£,y> -1
— ey = caalél”
/Rd |yl

Therefore | D|* and T, are essentially (upto a constant) inverses of each other.
If » > 0 is written as k 4+ a, where k is a nonnegative integer and 0 < a < 1,
then one defines the norm corresponding to r** derivative by

lullrp = Z |1 DY* -+ Dyull, + Z DY -+ Dgtallap (5.5)
> i<k > ini=k

This way the Sobolev spaces W, ,, are defined for fractional derivatives as
well.



Theorem 5.2. The inclusion map is well defined and bounded from W,,
into W 4 provided s < r, 1 <p < q < oo, and é > The extreme

r—s

-
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p
value of ¢ = 0o is allowed if % > 11) - =5

Proof. We can assume without loss of generality that 0 < r —s < 1. We can
go from W, , to Wy, in a finite number of steps, with 0 <r —s < 1 at each
step. We write Z = ¢4,7,|D|* where a = r — s. By definition |D|* maps
W, boundedly into W ,. By the earlier theorem 7T;, maps W, boundedly
into W ,. Although we proved it for s = 0, it is true for every s because 7,

commutes with |D|®. The cae ¢ = oo is covered as well by this argument. O

6 Generalized Functions.

Let us begin with the space W . This is a Hilbert Space with the inner
product

d
< o= [ g+ 3 fuadde= [ fhds
1

where h = g — chl Gasz;- Oince g € Wia, gz, € Lo and gy, is the derivative
of an Ly function. In fact since we can write [ fg,,dz as — [ f,,gdz, Any
derivative of an Ly function can be thought of as a bounded linear functional
on the space Wj 5. A simlar reasoning applies to all the spaces W, , . The
dual space of W, is W_, , where }D + é =1.

For a function to be in L, its singularities as well as decay at co must be
controlled. We can get rid of the condition at co by demaniding that f be
in L,(K) for every bounded set K or equivalently by insisting that ¢f € L,
for every C'*° function ¢ with compact support. This definition makes sense
for W, , as well. We say that f € Wﬂf;f it of € W, , for every C* function ¢
with compact support. One needs to check that on W, , mutiplication by a
smooth function is a bounded linear map. One can use Leibnitz’s rule if r is
an integer. For 0 < r < 1 we need the following lemma.

Lemma 2. If f € W,,, and ¢ € C” withr < r' < 1 i.e. ¢ is a bounded
function satisfying |¢(z) — ¢(y)| < Ol —y|", for all x,y, then ¢f € W,,.

Proof. We need to prove

o(z) = W) f(y) — o(x)f(x) dy
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is in L,. We can write

The contribution of first term is easy to control. To control the second term
it is sufficient to show that

sup dy < o0

T
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which is not hard. We split the integral into two regions |z — y| < 1 and
|x—y| > 1, use the Holder property of ¢ to obtain an estimate on the integral
over |z —y| < 1 and the boundedness of ¢ to get an estimate over |z —y| > 1,
both of which are uniform in z. O



